ИССЛЕДОВАНИЕ ЭЛЕКТРОМАГНИТНЫХ ПРОЦЕССОВ В БЕСКОНТАКТНОМ ДВИГАТЕЛЕ ПОСТОЯННОГО ТОКА С КОММУТАЦИЕЙ ОБМОТКИ ДВУМЯ ТРАНЗИСТОРАМИ ИЛИ ТИРИСТОРАМИ

В.М. Гридин

gridin1940@mail.ru

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация

Ключевые слова

Исследован бесконтактный двигатель постоянного тока с Двухсекционная тороидальная обдвухсекционной тороидальной якорной обмоткой и мотка, два индуктора с различдвумя цилиндрическими индукторами — постоянными ными числами полюсов, электромагнитами. Числа радиальных полюсов индукторов магнитная и потребляемая мощразличались в 2 раза. Электрический угол между секцияности, оптимальные ЭДС и угол ми составлял 180°. Коммутатор выполнен с двумя силоопережения коммутации выми транзисторами или тиристорами, которые поочередно встречно подключают секции якорной обмотки к источнику питания и отключают их от источника. Электромагнитные процессы исследованы с учетом распределения результирующей для якорной обмотки магнитной индукции по окружности воздушного зазора и индуктивности секций якорной обмотки. Получены выражения для электромагнитной и потребляемой обмоткой мощности, а также для определения ЭДС и угла опережения коммутации, соответствующих максимальному значению электромагнитного КПД и необходимых для проектирования и разработки бесконтактных двигателей Поступила в редакцию 24.11.2016 постоянного тока © МГТУ им. Н.Э. Баумана, 2017

Введение. Бесконтактные двигатели постоянного тока (БДПТ) по сравнению с обычными двигателями постоянного тока не имеют скользящих контактов и поэтому работают более надежно, особенно при вибрациях, ускорениях, после ударов, в вакууме и т. д. Механическая характеристика БДПТ аналогична таковой у обычного двигателя постоянного тока. Общие вопросы по устройству и работе БДПТ изложены в [1, 2]. Электромагнитные процессы в БДПТ рассмотрены в [1–7]. Низкоскоростные (моментные) БДПТ рассмотрены в [8–14]. Характеристики БДПТ зависят от числа секций якорной обмотки (ЯО), числа транзисторов коммутатора и способа управления током в секциях ЯО по положению ротора. Дискретный способ обеспечивает ток в каждой секции ЯО, не изменяемый при повороте ротора от момента подключения секции к источнику питания до момента отключения ее от источника. Аналоговый способ обеспечивает токи в секциях ЯО, изменяемые при повороте ротора строго синусоидально. Чем больше секций и транзисторов, тем больше удельный момент

(отношение момента к объему электромеханической части двигателя), меньше пульсации вращающего момента и скорости вращения вала, но тем сложнее и дороже датчик положения ротора (ДПР) и коммутатор. Поэтому число секций ЯО и транзисторов выбирают с учетом требований к характеристикам, сложности и стоимости БДПТ.

Чаще всего применяют БДПТ с дискретным управлением из-за более простой конструкции индуктора, схемы ЯО и управления транзисторами или тиристорами коммутатора по положению ротора. При этом обычно выполняют БДПТ с трехсекционной ЯО, шестью или тремя силовыми транзисторами при двух- или однополярной коммутации секций ЯО по положению ротора. Двигатель БДПТ с двумя секциями ЯО и двумя силовыми транзисторами или тиристорами имеет простейшие ДПР и коммутатор. Его целесообразно использовать при невысоких требованиях к характеристикам двигателя, при малой мощности и стоимости системы двигатель–исполнительный механизм [7, 9].

На рис. 1 приведены схемы силовой части БДПТ с коммутацией ЯО двумя транзисторами и с коммутацией обмотки двумя тиристорами.

Рис. 1. Схемы силовой части БДПТ с коммутацией обмотки двумя транзисторами (*a*) и двумя тиристорами (*б*)

Электрический угол между секциями 1, 2 составляет 180°. Транзисторы или тиристоры подключают секции ЯО к источнику питания поочередно встречно и отключают их от источника по сигналам ДПР. В схеме на рис. 1, *а* для исключения прерывания тока в секциях ЯО после их отключения от источника питания и, следовательно, перенапряжения на силовых транзисторах применены конденсатор, резистор и два диода [9]. В схеме на рис. 1, *б* конденсатор необходим не только для исключения прерывания тока, но и для запирания тиристоров обратным напряжением на конденсаторе через другой открытый тиристор. Диоды VD_1 и VD_2 необходимы для исключения колебательного процесса в электрических цепях с конденсатором и секциями ЯО [6].

На рис. 2 показаны продольное и поперечное сечения электромеханической части БДПТ [7].

Электромеханическая часть БДПТ состоит из основного цилиндрического индуктора 1, дополнительного цилиндрического индуктора 2 с удвоенным чис-

лом полюсов, якоря 3, содержащего магнитопровод и тороидальную ЯО из катушек 4, и вала 5. Каждая секция ЯО состоит из двух диаметрально противоположных тороидальных катушек 4, уложенных вокруг магнитопровода якоря, основной индуктор — четырехполюсный, а дополнительный индуктор — восьмиполюсный. На рис. 2, *б* как бы удалена часть основного индуктора до линии вырыва 6, что позволяет увидеть часть дополнительного индуктора, расположенного за основным.

Рис. 2. Продольное (а) и поперечное (б) сечения электромеханической части БДПТ

В [7] рассмотрены электромагнитные процессы в БДПТ (см. рис. 1, *a* и 2), но без учета индуктивности секций ЯО, что допустимо при мощности двигателя до 10...15 Вт. В [6] для БДПТ (см. рис. 1, 6 и 2) рассмотрены электромагнитные процессы в электрической цепи с конденсатором и секцией ЯО, отключенной от источника питания. Получены выражения и график, позволяющие определить значение необходимой емкости конденсатора. Но в известной литературе нет данных об исследовании электромагнитных процессов в БДПТ (см. рис. 1 и 2) с учетом индуктивности секций ЯО, т. е. для мощности более 10...15 Вт. Поэтому неизвестны выражения для электромагнитной мощности, мощности, потребляемой ЯО, а также выражения, позволяющие определять оптимальные значения ЭДС и угла опережения коммутации, необходимые для проектирования и разработки указанных БДПТ. В настоящей работе поставлена задача восполнить указанный пробел.

Решение поставленной задачи. На рис. 3 показано распределение по окружности воздушного зазора магнитной индукции от воздействия каждого и обоих индукторов. Здесь α — угловая координата зазора.

Для индукторов в виде цилиндрических постоянных магнитов с радиальными полюсами распределение магнитной индукции по окружности воздушного зазора близко к синусоидальному. Поскольку якорь расположен напротив обоих индукторов, то можно рассматривать распределение результирующей для ЯО магнитной индукции *b* в воздушном зазоре и, используя принцип суперпозиции, описать его следующим выражением [7]: Исследование электромагнитных процессов в бесконтактном двигателе постоянного тока...

$$b = \frac{l_1 b_1 + l_2 b_2}{l_1 + l_2} = \frac{l_1 B_{m1} \sin \alpha + l_2 B_{m2} \cos 2\alpha}{l_1 + l_2}$$

где l_1 и l_2 — длины индукторов 1 и 2 (рис. 2, *a*); B_{m1} и B_{m2} — амплитуды магнитных индукций b_1 и b_2 .

Рис. 3. Распределение по окружности воздушного зазора магнитной индукции: *b*₁, *b*₂ и *b* — от воздействия основного, дополнительного индуктора и двух индукторов соответственно

Для относительной результирующей для ЯО магнитной индукции \overline{b} справедливо выражение

$$\overline{b} = \frac{b(l_1 + l_2)}{B_{m1}l_1} = \sin \alpha + K \cos 2\alpha,$$

где $K = \frac{l_2}{l_1} \frac{B_{m_2}}{B_{m_1}}$. При $\overline{b}(0) = \overline{b}(90^\circ) = \overline{b}(180^\circ) = \overline{b}_{\min}$, $K = \overline{b}_{\min} = 0, 5$, где \overline{b}_{\min} — минимальное значение относительной индукции \overline{b} [7]. Значение коэффициента K можно обеспечить, передвигая вдоль вала дополнительный индуктор 2 (см. рис. 2, *a*).

При K=0,5

$$\overline{b} = \sin \alpha + 0, 5 \cos 2\alpha = -\sin^2 \alpha + \sin \alpha + 0, 5.$$

Максимальное значение относительной индукции \overline{b}_{max} представляет собой решение следующего уравнения:

$$\frac{db}{d\alpha} = \cos \alpha - \sin 2 \alpha = \cos \alpha \left(1 - 2\sin \alpha\right) = 0.$$

Отсюда получим $\alpha = 90^\circ$, $\alpha = \alpha_m = \arcsin 0, 5 = 30^\circ$ и $\alpha_m = 150^\circ$, $\overline{b}_{\max} = \overline{b}(30^\circ) = 0,75$.

Среднее значение относительной индукции \overline{b} на интервале $\alpha = 0...180^{\circ}$:

$$\overline{b}_{\rm cp} = \frac{1}{\pi} \int_{0}^{\pi} \overline{b} d\alpha = 0,637 \approx \left(\overline{b}_{\rm max} + \overline{b}_{\rm min}\right)/2 = 0,625,$$

 $\overline{b} = \overline{b}_{cp}$ при $\alpha = \psi = 8, 4^{\circ}$ (см. рис. 3). Это значение угла ψ получаем, решая квадратное уравнение

$$-\sin^2\alpha + \sin\alpha + 0, 5 = \overline{b}_{cp} = 0,625.$$

Другие значения угла α : 58,7°, 121,3°, 171,6°, $\overline{b} = 0$ при $\alpha = -21,5^{\circ}$.

Будем считать упрощенно, но, в соответствии с рис. 3, что относительная магнитная индукция \overline{b} изменяется линейно на интервале $\alpha_0...\Psi$ от нуля до значения $\overline{b}_{cp} = 0,625$ по формуле

$$\overline{b} = \overline{b}(0) + \frac{\overline{b}_{cp}}{|\alpha_0| + \Psi} \alpha$$

и на интервале 180°–(Ψ ...180°)– α_0 от 0,625 до нуля, а между двумя крайними зна-чениями 0,625 — по синусоидальному закону с амплитудой, равной 0,2 \overline{b}_{cp} , при постоянной составляющей, равной \overline{b}_{cp} :

$$\overline{b} = \overline{b}_{cp} + 0, 2\overline{b}_{cp} \sin[3, 31(\alpha - \Psi)].$$

Здесь α_0 — отрицательное значение угла α , при котором b = 0; $0, 2\overline{b}_{cp} = (\overline{b}_{max} - \overline{b}_{min})/2 = 0,125 = 0,2 \cdot 0,625$; $3,31 = \frac{3 \cdot 180^{\circ}}{180^{\circ} - 2 \cdot 8,4^{\circ}}$; $\overline{b} = \overline{b}_{cp}$ при значениях угла α , равных 8,4°, 62,8°, 117,2°, 171,6°.

Последняя формула для относительной индукции \overline{b} допустима, потому что эти четыре значения угла α равны или приблизительно равны ранее полученным значениям угла α , при которых $\overline{b} = \overline{b}_{cp}$.

Найдем абсолютное значение отрицательного угла α_0 . Для этого приравняем площади криволинейного и прямолинейного треугольников, имеющих общие вершины с координатами Ψ , 0 и Ψ , \overline{b}_{cp} , и решим уравнение:

$$\int_{-21,5^{\circ}}^{8,42^{\circ}} \left(\sin\alpha + 0, 5\cos 2\alpha\right) d\alpha = \overline{b}_{cp} \left(\left| \alpha_0 \right| + \Psi \right) \pi / 180.$$

Отсюда имеем 0,1838 = 0,005454 ($|\alpha_0| + \Psi$), $|\alpha_0| + 8,42^\circ = 33,7^\circ$,

$$|\alpha_0| = 25,3^\circ, |\alpha_0| = 3\Psi.$$

Если в последнюю формулу для относительной индукции \overline{b} подставить $\alpha = = \Psi$, $\overline{b} = \overline{b}_{cp}$, то получим значение отношений $\overline{b}(0)/\overline{b}_{cp}$ и $\overline{b}(180)/\overline{b}_{cp}$:

$$\frac{b\left(0\right)}{\overline{b}_{cp}} = 1 - \frac{\Psi}{\left|\alpha_{0}\right| + \Psi} = 0,75 = \frac{b\left(180\right)}{\overline{b}_{cp}}.$$

На рис. 4 приведены осциллограммы напряжения U на секции ЯО, ЭДС вращения e_1, e_2, e_3 и тока i_1, i_2, i_3 в секции ЯО в различные интервалы времени, рассчитанные по формулам, указанным далее, и построенные с использованием программы MATLAB.

Рис. 4. Осциллограммы напряжения, ЭДС вращения и тока в секции якорной обмотки

Здесь $T = \pi/\omega$ — время, за которое вал двигателя поворачивается на угол, равный 180°/*p*, или полупериод коммутации ($\omega = \pi pn/30$ — электрическая угловая частота изменения индукции *b*₁, см. рис. 3, *p* — число пар полюсов двигателя, *n* — число оборотов вала в минуту); $\vartheta = p\theta_{\pi}/180^{\circ}$ — относительный угол опережения коммутации (θ_{π} — угол смещения ДПР из нейтрального положения против направления вращения вала двигателя в целях увеличения мощности и КПД двигателя, $\nu = \vartheta + \gamma$; $\gamma = \Psi/180^{\circ} = 0,0468$; νT и T_p — время нарастания и спадания тока; $U = U_n - \Delta U_{\tau p}$ (U_n — напряжение источника питания, $\Delta U_{\tau p}$ — падение напряжения на транзисторе или тиристоре); *E* — ЭДС вращения, пропорциональная \overline{b}_{cp} .

При нейтральном положении ДПР ($\theta_{\mu} = 0, \ \vartheta = 0$) секция подключается к источнику питания и отключается от него при $e_1 = e_2 = 0,75 E$. Прерывистыми линиями показан ток в другой секции при $t = (0...T_p)$ и t = (T...T) + vT.

Осциллограммы на рис. 4 изображены для благоприятного случая: за время vT ЭДС достигает значения E, а ток в секциях ЯО — значения (U-E)/R, где R — активное сопротивление секции ЯО. Форма тока совпадает с формой ЭДС, если не учитывать их колебания с угловой частотой 3,31 ω . Поэтому значение электромагнитного КПД, т. е. отношения электромагнитной мощности $P_{\text{эм}}$ к мощности $P_{\text{п}}$, потребляемой ЯО, близко к максимальному значению.

На интервале t = 0 - vT ЭДС e_1 пропорциональна индукции b и ее можно описать выражением

$$e_1 = \left(1 - d\vartheta + d\frac{t}{T}\right) E_1,\tag{1}$$

где $d = 180^{\circ} / |\alpha_0| = 7,12, E_1 = 0,75E.$

Выражение (1) получено с учетом следующих условий.

Зависимость $e_1(t)$ — линейная, так как линейна зависимость b(t). При $\theta_{\pi} = |\alpha_0|, \ \vartheta = \frac{|\alpha_0|}{180^{\circ}}, \ t = 0 \ e_1 = 0$ секция подключается к источнику питания при $e_1 = 0$. При $\vartheta = 0, \ t = 0 \ e_1 = E_1$.

На интервале $t = (vT...T) + (\vartheta - \gamma)T$ ЭДС e_2 пропорциональна индукции b, $\alpha = \omega t$, а $\Psi = \omega vT$.

Поэтому

$$e_2 = E + 0, 2E \sin[3, 31\omega(t - \nu T)].$$
⁽²⁾

Формулы (1), (2) и выражения, приведенные далее, используются для расчета и построения осциллограмм ЭДС *e*₁, *e*₂, *e*₃ (см. рис. 4).

Для указанного благоприятного случая найдем выражения для относительных токов $\overline{i_1}, \overline{i_2}, \overline{i_3},$ т. е. для отношений токов в секции ЯО i_1, i_2, i_3 к току в секции при пуске двигателя, равному U/R.

Обозначим: $\varepsilon = E/U$, $\varepsilon_1 = E_1/U = 0,75\varepsilon$ — коэффициенты ЭДС; $\tau = L/R$ — электрическая постоянная времени секции ЯО; L — индуктивность секции ЯО, $\beta = T/\tau$.

Взаимной индуктивностью секций пренебрегаем, так как в пазах якоря лежат проводники только одной секции, и поэтому магнитная связь между секциями незначительна.

Для первого интервала времени t = 0 - vT справедливо уравнение равновесия напряжений в якорной цепи: $\overline{i_1} + \tau \frac{d\overline{i_1}}{dt} + \frac{e_1}{U} = 1.$

Решив это уравнение с учетом формулы (1) и начального условия $\overline{i_1}(0) = 0$, получим выражение для относительного тока $\overline{i_1}$:

$$\overline{i_1} = s \left(1 - e^{-t/\tau} \right) - d\varepsilon_1 \frac{t}{T},$$

где $s = 1 - \varepsilon_1 + d\varepsilon_1 \vartheta + d\varepsilon_1 / \beta$.

При t = vT должно быть $e_1 = (1 + d\gamma) E_1 = E$,

$$\overline{i_1}(\nu T) = 1 - \varepsilon = s(1 - e^{-\beta\nu}) - d\varepsilon_1\nu,$$

где $\varepsilon = (1 + d\gamma)\varepsilon_1$.

Отсюда имеем

$$1 - e^{\beta \nu} + \beta \nu - \beta \gamma + \beta (1 - \varepsilon_1) / (d\varepsilon_1) = 0.$$
(3)

Поскольку $e^{\beta v} \approx 1 + \beta v + \beta^2 v^2 / 2$, то можно записать следующее приближенное выражение:

$$v \approx \sqrt{\frac{2}{\beta} \left(\frac{1-\varepsilon_1}{d\varepsilon_1} - \gamma\right)} = \sqrt{\frac{2}{\beta} \left(\frac{1-0.75\varepsilon}{5.325\varepsilon} - 0.0468\right)},\tag{4}$$

$$\vartheta = \nu - \gamma = \nu - 0,0468. \tag{5}$$

Очевидно, что при $\tau = 0$, т. е. при $\beta = \infty$, $\nu = 0$ и чем меньше β и ε , тем больше относительные углы ν и ϑ .

Приближенно считая, что на первом интервале токи i_1 и $\overline{i_1}$ изменяются линейно (см. рис. 4), получаем выражение

$$\overline{i_1} \approx \frac{1-\varepsilon}{\nu} \frac{t}{T}.$$
(6)

Для второго интервала времени t = vT - T справедливо уравнение равновесия напряжений $\overline{i_2} + \tau \frac{d\overline{i_2}}{dt} + \frac{e_2}{U} = 1$. Решив его с учетом формулы (2) и начального условия $\overline{i_2}$ (vT) = $1 - \varepsilon$, получим выражения

$$\overline{i}_2 = \overline{i}'_2 - \overline{i}''_2, \ \overline{i}'_2 = 1 - \varepsilon, \tag{7}$$

$$\overline{i}_{2}^{\prime\prime} = \overline{I}_{\max} \left\{ \sin\left[3, 31\omega(t - \nu T) - \varphi\right] + \sin\varphi \cdot e^{-(t - \nu T)/\tau} \right\},\tag{8}$$

где

$$\overline{I}_{\max} = \frac{I_{\max}}{U/R}, \ I_{\max} = \frac{0,2\varepsilon U}{\sqrt{R^2 + (3,31\omega L)^2}};$$
(9)

$$\varphi = \operatorname{arctg} \frac{3,31\omega L}{R}, \ a \ \overline{i_2} (\nu T) = 1 - \varepsilon.$$
 (10)

Согласно принципу суперпозиции, ток \vec{i}'_2 обусловлен действием напряжения U и ЭДС E, а ток \vec{i}''_2 — действием переменной составляющей ЭДС e_2 (2). Поскольку $\frac{3,31\omega L}{R}\frac{T}{T} = \frac{10,4}{\beta}$, где $10,4 = 3,31\omega T = 3,31\pi$, то

$$\varphi = \arctan \frac{10, 4}{\beta} > 0, \ \overline{I}_{\max} = 0, 2\varepsilon K_{\beta} < 1, \ K_{\beta} = \frac{1}{\sqrt{1 + 108/\beta^2}} < 1.$$

Выражения (4), (6)–(10) использованы для расчета и построения осциллограмм токов i_1, i_2, i_3 (см. рис. 4).

На третьем интервале времени $t = (T...T) + T_p$ действует сначала ЭДС e_2 , а затем — e_3 (см. рис. 4). Время спадания тока до нуля T_p зависит от вида электрических цепей, предохраняющих транзисторы или тиристоры от перенапряжения, и от произведения vT. Его, а следовательно, и ток \overline{i}_3 нельзя выразить в явном виде. Но можно приближенно учесть электромагнитную мощность как часть мощности, создаваемой на первом интервале времени.

Найдем выражения для относительных мощностей \overline{P}_{π} и \overline{P}_{3M} :

$$\overline{P}_{\pi} = \frac{P_{\pi}}{U^2/R}, \ \overline{P}_{\scriptscriptstyle \Im M} = \frac{P_{\scriptscriptstyle \Im M}}{U^2/R}.$$

Согласно рис. 4, можно записать

$$\overline{P}_{\!\scriptscriptstyle \Pi} = \overline{P}_{\!\scriptscriptstyle \Pi 1} + \overline{P}_{\!\scriptscriptstyle \Pi 2}' - \overline{P}_{\!\scriptscriptstyle \Pi 2}'' \ \ {}_{\!\scriptscriptstyle M} \ \overline{P}_{\!\scriptscriptstyle \Im M} = \overline{P}_{\!\scriptscriptstyle \Im M 1} + \overline{P}_{\!\scriptscriptstyle \Im M 2}' - \overline{P}_{\!\scriptscriptstyle \Im M 2}'' + \overline{P}_{\!\scriptscriptstyle \Im M 3},$$

где индексы 1, 2, 3 — номер интервала времени; \overline{P}'_{n2} и $\overline{P}'_{_{9M2}}$ — мощности, обусловленные действием напряжения U и ЭДС E, \overline{P}''_{n2} и $\overline{P}''_{_{9M2}}$ — действием переменной составляющей ЭДС e_2 (2), а также следующие выражения:

$$\begin{split} \overline{P}_{\Pi 1} &= \frac{1}{T} \int_{0}^{vT} \overline{i}_{1} dt; \quad \overline{P}_{\Pi 2}' = \frac{1}{T} \int_{vT}^{T} \overline{i}_{2}' dt; \quad \overline{P}_{\Pi 2}'' = \frac{1}{T} \int_{vT}^{T} \overline{i}_{2}'' dt; \\ \overline{P}_{\Im M 1} &= \frac{1}{T} \int_{0}^{vT} \frac{e_{1}}{U} \overline{i}_{1} dt; \quad \overline{P}_{\Im M 2}' = \frac{1}{T} \int_{vT}^{T} \varepsilon \overline{i}_{2} dt; \\ \overline{P}_{\Im M 2}'' &= \frac{1}{T} \int_{vT}^{T} 0, 2\varepsilon \sin \left[3, 31\omega \left(t - vT \right) \right] i_{2}'' dt; \\ \overline{P}_{\Im M 3} &= \xi \overline{P}_{\Im M 1}; \quad \xi \approx 0, 8 \dots 1, 2. \end{split}$$

Коэффициент ξ учитывает, что на третьем интервале времени одновременно протекают токи в двух секциях ЯО (см. рис. 4).

Используя формулы (1), (6), (7), (8), получаем:

$$\begin{split} \overline{P}_{n1} + \overline{P}'_{n2} &= \left(1 - \varepsilon\right) \left(1 - \frac{\nu}{2}\right); \\ \overline{P}''_{n2} &= \overline{I}_{max} \left\{ 0,0962 \left[\cos \varphi - \cos \left(124^{\circ} + \nu 596^{\circ} + \varphi\right)\right] + \frac{\sin \varphi}{\beta} \left(1 - e^{-(1 - \nu)\beta}\right) \right\}; \\ \overline{P}_{_{9M1}} + \overline{P}_{_{9M3}} &= \left(1 + \xi\right) 0,75\varepsilon \left(1 - \varepsilon\right) \left[\left(1 - d\vartheta\right) \frac{\nu}{2} + d\frac{\nu^2}{3} \right]; \\ P'_{_{9M2}} &= \varepsilon \left(1 - \varepsilon\right) \left(1 - \nu\right). \end{split}$$

Выражения для $\overline{P}''_{_{9M2}}$ и $\overline{P}_{_{9M}}$ оказываются достаточно сложными, но так как $\overline{P}''_{_{9M2}} \ll \overline{P}_{_{9M1}} + \overline{P}'_{_{9M2}} + \overline{P}_{_{9M3}}, \quad \overline{P}''_{_{11}} \ll \overline{P}_{_{11}} + \overline{P}'_{_{12}},$ то можно приближенно считать, что $\overline{P}_{_{9M}} \approx \eta'_{_{9M}} \overline{P}_{_{11}},$ где

$$\eta_{\mathfrak{SM}}^{\prime} = \frac{\left(1+\xi\right)\overline{P}_{\mathfrak{SM}1} + \overline{P}_{\mathfrak{SM}2}^{\prime}}{\overline{P}_{\mathfrak{n}1} + \overline{P}_{\mathfrak{n}2}^{\prime}},\tag{11}$$

η_{эм} — приближенный электромагнитный КПД.

Далее приведены результаты расчета характеристик БДПТ по полученным формулам для следующих исходных данных:

$$\varepsilon = 0, 8, \ \xi = 0, 7, \ \beta = 10 \ \text{i} \ \beta = 5.$$

Это соответствует мощности БДПТ, равной примерно 15...25 Вт. Большей мощности соответствует меньшее значение β . При проектировании БДПТ значение β нужно определять исходя из заданных значений мощности и скорости вращения вала двигателя [1].

Результаты расчета для $\beta = 10$ в отличие от результатов расчета для $\beta = 5$ указаны в скобках.

Результаты расчета характеристик БДПТ следующие:

$$\begin{split} \mathbf{v} &= 0,1373 \left(0,0971 \right); \; \vartheta = 0,0905 \left(0,0503 \right); \; \varphi = 64,3^{\circ} \left(46,1^{\circ} \right); \\ k_{\beta} &= 0,4336 \left(0,6934 \right); \; \overline{I}_{\max} = 0,0694 \left(0,1109 \right); \\ \overline{P}_{n1} + \overline{P}'_{n2} &= 0,1863 \left(0,1903 \right); \; \overline{P}''_{n2} = 0,0152 \left(0,0225 \right); \\ \frac{\overline{P}''_{n2}}{\overline{P}_{n1} + \overline{P}'_{n2}} &= 0,0816 \left(0,1182 \right); \; \overline{P}_{_{\rm JM1}} + \overline{P}_{_{\rm JM3}} = 0,0116 \left(0,0090 \right); \\ \overline{P}'_{_{\rm JM2}} &= 0,1380 \left(0,1445 \right); \; \overline{P}_{_{\rm II}} = 0,1711 \left(0,1678 \right); \\ \eta'_{_{\rm JM}} &= 0,8030 \left(0,8066 \right); \; \overline{P}_{_{\rm JM}} = 0,1374 \left(0,1354 \right). \end{split}$$

Результаты расчета показывают влияние отношений $\tau = \frac{L}{R}$ и $\beta = \frac{T}{\tau}$ на о со и \overline{L} \overline{P}''_{n2} \overline{D} \overline{D} со со со \overline{P}'_{n2}

ν, θ, φ и \overline{I}_{max} , $\frac{\overline{P}''_{\pi 2}}{\overline{P}_{\pi 1} + P'_{\pi 2}}$, $\overline{P}_{_{3M}}$, $\overline{P}_{_{\pi}}$, $\eta'_{_{3M}}$.

Для определения оптимальных значений коэффициента ЭДС є и относительного угла v при известном значении отношения $\beta = T/\tau$ нужно задать различные значения коэффициента ЭДС є в диапазоне, равном примерно 0,65–0,85. Большие значения є соответствуют большей мощности двигателя. Для каждого значения є нужно определить значение v по формуле (3) или (4), относительных мощностей $\overline{P}_{_{\rm 3M1}}$, $\overline{P}'_{_{\rm 3M2}}$, $\overline{P}_{_{\rm n1}}$, $\overline{P}'_{_{\rm n2}}$ и электромагнитного КПД $\eta'_{_{\rm 3M}}$ по формуле (11). Для максимального значения электромагнитного КПД $\eta'_{_{\rm 3M}}$ нужно определить соответствующие оптимальные значения є, v и 9.

Заключение. Исследованы электромагнитные процессы в рассматриваемом БДПТ с учетом распределения результирующей для ЯО магнитной индукции по окружности воздушного зазора и индуктивности секций ЯО. Получены выражения для электромагнитной мощности, мощности, потребляемой ЯО, а также выражения, позволяющие определять значения ЭДС и угла опережения коммутации, соответствующие максимальному значению электромагнитного КПД и необходимые для проектирования и разработки БДПТ.

ЛИТЕРАТУРА

1. Балагуров В.А., Гридин В.М., Лозенко В.К. Бесконтактные двигатели постоянного тока с постоянными магнитами. М.: Энергия, 1975. 128 с.

4. *Гридин В.М.* Моделирование и оптимизация электромагнитных процессов для маломощных бесконтактных двигателей постоянного тока // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2007. № 3. С. 48–61.

5. Гридин В.М. Исследование электромагнитных процессов бесконтактных двигателей постоянного тока с несимметричной якорной обмоткой // Электричество. 2012. № 10. С. 43–49.

6. *Гридин В.М.* Особенности электромагнитных процессов в бесконтактном двигателе постоянного тока с коммутацией обмотки двумя тиристорами // Электро. 2016. № 4. С. 22–25.

7. Гридин В.М. Бесконтактный двигатель постоянного тока с коммутацией обмотки двумя транзисторами // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 4. С. 54–63. DOI: 10.18698/0236-3933-2017-4-54-63

8. Столов Л.И., Афанасьев А.Ю. Моментные двигатели постоянного тока. М.: Энергоатомиздат, 1989. 223 с.

9. Осин И.Л., Юферов Ф.М. Электрические машины автоматических устройств. М.: Изд-во МЭИ, 2003. 424 с.

10. Баранов М.В., Бродовский В.Н., Зимин А.В., Каржавов Б.Н. Электрические следящие приводы с моментным управлением исполнительными двигателями. М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. 240 с.

11. Гридин В.М. Электромагнитные характеристики моментных бесконтактных двигателей постоянного тока // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2011. № 2. С. 75–86.

12. Гридин В.М. Бесконтактные тахогенератор и моментный двигатель постоянного тока с двумя индукторами и однополупериодной коммутацией // Инженерный вестник. 2015. № 11. URL: http://engsi.ru/doc/826588.html

13. Гридин В.М. Бесконтактный моментный двигатель постоянного тока с двухсекционной обмоткой // Электро. 2016. № 3. С. 39–42.

14. Гридин В.М. Способы уменьшения пульсации момента и выходного напряжения бесконтактных моментных двигателей и тахогенераторов постоянного тока // Электричество. 2016. № 4. С. 56–61.

Гридин Владимир Михайлович — канд. техн. наук, доцент кафедры «Электротехника и промышленная электроника» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Просьба ссылаться на эту статью следующим образом:

Гридин В.М. Исследование электромагнитных процессов в бесконтактном двигателе постоянного тока с коммутацией обмотки двумя транзисторами или тиристорами // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2017. № 6. С. 4–16. DOI: 10.18698/0236-3933-2017-6-4-16

^{2.} *Овчинников И.Е., Лебедев Н.И.* Бесконтактные двигатели постоянного тока. Л.: Наука, 1979. 270 с.

^{3.} *Гридин В.М.* Электромагнитные процессы в трехфазных бесконтактных двигателях постоянного тока с однополупериодной коммутацией // Ракетно-космическая техника. 1993. Сер. 10. Вып. 2.

INVESTIGATING ELECTROMAGNETIC PROCESSES IN A BRUSHLESS DIRECT CURRENT MOTOR WITH THE WINDING COMMUTATED BY MEANS OF TWO TRANSISTORS OR THYRISTORS

V.M. Gridin

gridin1940@mail.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
The study deals with a brushless direct current motor with	Two-section toroidal winding, induc-
a two-section toroidal armature winding and two perma-	tors with various numbers of poles,
nent magnets serving as cylindrical inductors. The number	electromagnetic power and power
of radial poles in one inductor is twice as large as that in	consumption, optimum values of the
the other inductor. The electrical angle between sections	electromotive force coefficient and
constitutes 180°. The commutator comprises two power	commutation advancement angle
transistors or thyristors that alternatively connect sections	
of the armature winding inversely to the power source and	
disconnect them from it. Our investigation of the electro-	
magnetic processes took into account the distribution of	
the magnetic induction resultant in the armature winding	
along the circumference of the air gap and the inductance	
of the armature winding sections. We derived equations for	
electromagnetic power and power consumption, as well as	
those for determining the electromotive force coefficient	
and commutation advancement angle corresponding to the	
maximum electromagnetic efficiency, which are necessary	Received 24.11.2016
to design and develop brushless direct current motors	© BMSTU, 2017

REFERENCES

[1] Balagurov V.A., Gridin V.M., Lozenko V.K. Beskontaktnye dvigateli postoyannogo toka s postoyannymi magnitami [Brushless DC motors with constant magnets]. Moscow, Energiya Publ., 1975. 128 p.

[2] Ovchinnikov I.E., Lebedev N.I. Beskontaktnye dvigateli postoyannogo toka [Brushless DC motors]. Leningrad, Nauka Publ., 1979. 270 p.

[3] Gridin V.M. Elektromagnitnye protsessy v trekhfaznykh beskontaktnykh dvigatelyakh postoyannogo toka s odnopoluperiodnoy kommutatsiey [Electromagnetic processes in three-phase brushless DC motors with half-wave commutation]. *Raketno-kosmicheskaya tekhnika* [Rocket and Space Equipment], 1993, ser. 10, iss. 2 (in Russ.).

[4] Gridin V.M. Simulation and optimization of electromagnetic processes for low-power noncontact motors of direct current. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.* [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2007, no. 3, pp. 48–61 (in Russ.).

[5] Gridin V.M. Research on electromagnetic processes in brushless DC motors with non-symmetric armature winding. *Elektrichestvo*, 2012, no. 10, pp. 43–49 (in Russ.).

[6] Gridin V.M. Features of electromagnetic processes in brushless DC motor with winding commutation by two thyristors. *Elektro*, 2016, no. 4, pp. 22–25 (in Russ.).

[8] Stolov L.I., Afanas'ev A.Yu. Momentnye dvigateli postoyannogo toka [Direct current torque motors]. Moscow, Energoatomizdat Publ., 1989. 223 p.

[9] Osin I.L., Yuferov F.M. Elektricheskie mashiny avtomaticheskikh ustroystv [Electric machines of automatic devices]. Moscow, MEI Publ., 2003. 424 p.

[10] Baranov M.V., Brodovskiy V.N., Zimin A.V., Karzhavov B.N. Elektricheskie sledyashchie privody s momentnym upravleniem ispolnitel'nymi dvigatelyami [Electrical slave drive with torque control by actuating motors]. Moscow, Bauman MSTU Publ., 2006. 240 p.

[11] Gridin V.M. Electromagnetic characteristics of moment contactless motors of direct current. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.* [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2011, no. 2, pp. 75–86 (in Russ.).

[12] Gridin V.M. Brushless tacho-generator and DC motor with two induction coils and halfwave commutation. *Inzhenernyy vestnik* [Engineering Bulletin], 2015, no. 11 (in Russ.). Available at: http://engsi.ru/doc/826588.html

[13] Gridin V.M. Contactless DC torque motor with two-section winding. *Elektro*, 2016, no. 3, pp. 39–42 (in Russ.).

[14] Gridin V.M. Methods for reduction torque pulsation and output voltage of brushless DC motors and tachogenerators. *Elektrichestvo*, 2016, no. 4, pp. 56–61 (in Russ.).

Gridin V.M. — Cand. Sc. (Eng.), Assoc. Professor, Department of Electrical Engineering and Industrial Electronics, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Please cite this article in English as:

Gridin V.M. Investigating Electromagnetic Processes in a Brushless Direct Current Motor with the Winding Commutated by Means of Two Transistors or Thyristors. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr.* [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2017, no. 6, pp. 4–16. DOI: 10.18698/0236-3933-2017-6-4-16

^[7] Gridin V.M. Non-contacting DC current motor with coil switching by two transistors. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr.* [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2017, no. 4, pp. 54–63 (in Russ.). DOI: 10.18698/0236-3933-2017-4-54-63