УДК 621.314

КОМПЕНСАЦИЯ ФОРМЫ НЕИДЕАЛЬНЫХ СИГНАЛОВ ИНДУКТИВНЫХ ДАТЧИКОВ ПОЛОЖЕНИЯ РОТОРА ДЛЯ БЕСКОНТАКТНЫХ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА

В.Н. Енин А.В. Степанов enin@bmstu.ru stepanov.bmstu@gmail.com

МГТУ им. Н.Э. Баум	ана, Москва, 1	Российская (Федерация
--------------------	----------------	--------------	-----------

Аннотация	Ключевые слова		
Предложен метод компенсации формы неидеальных	Индуктивный датчик, неидеальные		
сигналов индуктивного датчика положения ротора	сигналы, дробно-рациональная		
для бесконтактного двигателя постоянного тока.	функция, коррекция сигналов,		
Метод основан на коррекции неидеального сигнала с	MATLAB		
помощью дробно-рациональной функции. Для опре-			
деления параметров аппроксимации использованы			
итерационные алгоритмы наилучшего приближения			
Ремеза. Предлагаемый метод позволяет скорректиро-			
вать деформацию, фазовый сдвиг и смещение неиде-			
ального синусоидального сигнала индуктивного			
датчика. С помощью компьютерной модели проведе-			
но исследование предлагаемого метода для компенса-			
ции неидеального сигнала с использованием пакета	Поступила в редакцию 14.07.2017		
MATLAB	© МГТУ им. Н.Э. Баумана, 2018		

Введение. В вентильных двигателях [1-3], которые находят все более широкое применение в приборостроении, робототехнике, системах управления технологическими процессами для управления электронным коммутатором двигателя используются датчики положения ротора. Для определения угла поворота ротора используются оптические и индуктивные датчики положения (синусоидальные энкодеры). Индуктивные датчики положения ротора получают все более широкое распространение вследствие простой конструкции и малой зависимости от внешних условий, но для более широкого применения индуктивных датчиков необходимо повышение точности позиционирования положения ротора. Выходные сигналы индуктивного датчика неидеальны, отличаются от синусоидальных и содержат фазовый сдвиг, постоянное смещение, деформацию синусоидального сигнала, амплитудную ошибку, шум. Кроме того, искажение сигнала возникает вследствие использования в канале предварительной обработки сигнала аналоговых и цифровых устройств: операционных усилителей, фильтров, аналого-цифровых преобразователей. Предлагаются различные способы математического описания неидеального сигнала датчика и методы коррекции реального сигнала [4–10], реализуемые как аппаратными, так и программными средствами. В работе [4] предложен метод компенсации, основанный на интерполяции полиномом выходного сигнала синусоидального энкодера. Метод градиентного спуска для коррекции неидеального сигнала используется в работе [5]. Недостаток этого метода — плохая сходимость в низкочастотной области и с зашумленным сигналом. В [6] предложено усовершенствование градиентного метода для улучшения сходимости и уменьшения вычислительных затрат, однако это не решило все проблемы сходимости этого метода. В работе [7] рассматривается метод, основанный на адаптивной цифровой схеме фазовой автоматической подстройки частоты, позволяющей компенсировать в реальном времени на микропроцессоре шум, фазовый сдвиг, смещение сигналов от датчика. В статье [8] для компенсации смещения и амплитуды сигнала используется dq-преобразование. Затем по d-компоненте сигнала вычисляются смещение и амплитудная ошибка сигнала, по которым компенсируется сигнал. В работе [9] входные неидеальные сигналы датчика сравниваются с графиком эллипса, по отклонению корректируется сигнал в реальном масштабе времени. Исследованию формы сигнала индуктивного датчика для бесконтактного двигателя постоянного тока дискового типа и возможности коррекции сигнала для повышения точности определения положения ротора посвящена работа [10]. Несмотря на множество предложенных методов компенсации неидеальных синусоидальных сигналов индуктивных датчиков, проблема построения эффективных алгоритмов коррекции сигналов и повышение точности индуктивных датчиков, особенно вопросы компенсации деформации синусоидального сигнала, все еще остаются актуальными.

Цель настоящей статьи — разработка и обоснование метода повышения точности компенсации формы выходного сигнала реального датчика, основанного на аппроксимации функции преобразования дробно-рациональной функцией с применением теории наилучшего приближения Чебышева и алгоритмов Ремеза [11].

Функциональные особенности исследуемого индуктивного датчика. Индуктивный датчик положения ротора вырабатывает два выходных сигнала синусоидального вида. Рассматриваемый датчик [10] для бесконтактного двигателя постоянного тока дискового типа содержит два диска, один расположен на роторе, а другой, неподвижный, закреплен на статоре. На диске, расположенном на роторе, в углублениях закреплены три ферромагнитных и три диамагнитных полюса. На неподвижном диске расположены со смещением на 90° четыре плоские катушки, чувствительные элементы (ЧЭ). При вращении индуктивности катушек ЧЭ периодически изменяются. Зависимость приращения индуктивности катушки от угла поворота ротора несколько отличается от синусоидальной [10]. Индуктивности включены в резонансные контуры мостовой схемы, подключенной к источнику синусоидального напряжения. Частотные характеристики резонансного контура при разных значениях индуктивности приведены на рис. 1.

Мостовая резонансная электрическая цепь (РЭЦ), используемая для преобразования параметра ЧЭ (приращения индуктивности) в напряжение, также приводит к несимметричности, фазовому сдвигу сигнала. Поэтому в канале обработки выходных сигналов индуктивного датчика (рис. 2) предусмотрен блок компенсации (БК) ошибки, возникающей вследствие неидеальности выходных сигналов индуктивного датчика.

Компенсация формы неидеальных сигналов индуктивных датчиков положения ротора...

Рис. 1. Амплитудно-частотная (*a*) и фазочастотная (*б*) характеристики РЭЦ: 1 — для L₀ + ΔL ; 2 — для L₀; 3 — для L₀ – ΔL

Рис. 2. Функциональная схема измерительного преобразователя индуктивного датчика

При изменении индуктивностей, включенных в резонансные контуры мостовой схемы, формируются выходные напряжения *u*₁, *u*₂, которые усиливаются операционным усилителем (ОУ). В БК происходит демодуляция, компенсируется фазовый сдвиг, смещение и деформация неидеальных синусоидальных сигналов.

После коррекции сигналы поступают на фазочастотный детектор (ФЧД), на выходе из которого формируются угол поворота и скорость вращения ротора.

Неидеальные сигналы после демодуляции можно описать следующим образом:

$$u_1(\theta) = f_1(\theta) + \varepsilon_1; \tag{1}$$

$$u_2(\theta) = f_2(\theta + \psi) + \varepsilon_2, \qquad (2)$$

где $f_1(\theta), f_2(\theta)$ — периодические функции, описывающие форму выходных сигналов датчика (определяются аналитически или с использованием экспериментальных данных); ψ — фазовое смещение сигнала; $\varepsilon_1, \varepsilon_2$ — смещение нуля сигналов.

Методика и алгоритм компенсации неидеальных сигналов. Выходной сигнал реального датчика отличается от синусоидальной формы [10]. Для преобразования выходных реальных сигналов в синусоидальную форму введем функцию преобразования

$$\sin(\theta) = g_1(f_1(\theta) + \varepsilon_1);$$

$$\cos(\theta + \delta) = g_2(f_2(\theta + \psi) + \varepsilon_2),$$

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2018. № 2

перепишем это уравнение в следующем виде:

$$\sin(\theta) = g_1(u_1(\theta) - \varepsilon_1);$$

$$\cos(\theta + \delta) = g_2(u_2(\theta) - \varepsilon_2).$$

Тогда получим

$$\sin(\theta) = g_1(f_1(\theta)), \tag{3}$$

$$\cos(\theta + \psi) = g_2(f_2(\theta + \psi)). \tag{4}$$

Функции преобразования $g_1(f_1), g_2(f_2), (3), (4)$ можно представить как

$$g_1(f_1) = g_s(f_1)f_1; \tag{5}$$

$$g_2(f_2) = g_c(f_2)f_2.$$
(6)

Предполагая, что функция $f_1(\theta)$ нечетная, тогда, учитывая (3) и (5), функция $g_s(f_1)$ должна быть четной. Если $f_2(\theta)$ четная функция, то, учитывая (4) и (6), функция $g_c(f_2)$ должна быть также четной. Поскольку функция преобразования g(f) должна быть четной, будем аппроксимировать ее дробнорациональной функцией вида

$$g_a(f) = \frac{\sum_{k=0}^{n} a_k f^{2k}}{1 + \sum_{k=1}^{n} b_k f^{2k}}.$$
(7)

Коэффициенты дробно-рациональной функции будем аппроксимировать на основе теории наилучшего приближения и алгоритмов Ремеза [11]. Алгоритм аппроксимации рассмотрим на примере решения уравнения (3) с учетом представления (5). Поскольку функция $g_a(f)$ является четной, то ее можно аппроксимировать только на интервале [0, $\pi/2$]. Разобьем интервал [0, $\pi/2$] сеткой узлов

$$\theta_k = \frac{\pi}{2n}k, \quad k = 0, 1, 2, \dots, 2n.$$

Обозначим $f_l = f(\theta_l), l = 0, 2n$. Для чебышевской интерполяции на множестве значений углов $\theta_0, \theta_1, \theta_2, \theta_3, ..., \theta_{2n}$ должно выполняться равенство

$$f_l \frac{\sum_{k=0}^{n} a_k f_l^{2n}}{1 + \sum_{k=1}^{n} b_k f_l^{2n}} = \sin(\theta_l) + (-1)^l \varepsilon, \quad l = 0, 1, 2, 3, \dots, 2n,$$

где є — погрешность чебышевской интерполяции. Неизвестными являются коэффициенты дробно-рациональной аппроксимации a_0 , a_k , b_k , k = 1, 2, 3, ..., n и погрешность чебышевской интерполяции є. Для их определения необходимо решить систему нелинейных уравнений Компенсация формы неидеальных сигналов индуктивных датчиков положения ротора...

$$f_{l} \sum_{k=0}^{n} a_{k} f_{l}^{2n} - \left(\sin\left(\theta_{l}\right) + \left(-1\right)^{l} \varepsilon \right) \sum_{k=0}^{n} b_{k} f_{l}^{2n} - \left(-1\right)^{l} \varepsilon =$$

= sin(\theta_{l}), l = 0, 1, 2, 3, ..., 2n + 1. (8)

Система (8) является системой нелинейных алгебраических уравнений, которую будем решать итерационным методом Ньютона:

$$X_{i+1} = X_i + h [A_i]^{-1} B_i,$$

где $X = [a_0, a_1, a_2, ..., a_n, b_1, b_2, ..., b_n, \varepsilon]$ — вектор-столбец неизвестных, включающий в себя параметры аппроксимирующей функции и погрешность чебышевской интерполяции; $B = [b_1, b_2, b_3, ..., b_{2n+1}]$ — вектор невязок системы уравнений (8),

$$b_{l} = \sum_{k=0}^{n} a_{k} f_{l}^{2n+1} - \left(\sin\left(\theta_{l}\right) + \left(-1\right)^{l} \varepsilon\right) \sum_{k=0}^{n} b_{k} f_{l}^{2n} - \left(-1\right)^{l} \varepsilon - \sin\left(\theta_{l}\right),$$
$$l = 0, 1, 2, 3, \dots, 2n;$$

A — квадратная матрица Якоби нелинейной системы уравнений (8) размера 2n + 2,

$$\begin{split} A &= \\ & = \\ & \left[\begin{array}{c} f_0^1 f_0^3 \dots f_0^{2n+1} - f_0^2 \left(\sin \theta_0 + \varepsilon \right) - f_0^2 \left(\sin \theta_0 + \varepsilon \right) \dots - \sum_{k=1}^n f_0^{2k} b_k + 1 \\ & f_1^1 f_1^3 \dots f_1^{2n+1} - f_1^2 \left(\sin \theta_1 + \varepsilon \right) - f_1^2 \left(\sin \theta_1 + \varepsilon \right) \dots - \sum_{k=1}^n f_1^{2k} b_k + 1 \\ & f_2^1 f_2^3 \dots f_2^{2n+1} - f_2^2 \left(\sin \theta_2 + \varepsilon \right) - f_2^2 \left(\sin \theta_2 + \varepsilon \right) \dots - \sum_{k=1}^n f_2^{2k} b_k + 1 \\ & \dots \\ & \dots \\ & \dots \\ & \dots \\ & f_{2n+1}^1 f_{2n+1}^3 \dots f_{2n+1}^{2n+1} - f_{2n+1}^2 \left(\sin \theta_{2n+1} + \varepsilon \right) - f_{2n+1}^2 \left(\sin \theta_{2n+1} + \varepsilon \right) - \sum_{k=1}^n f_{2n+1}^{2k} b_k + 1 \\ & \dots \\ & \dots$$

h — действительное число, выбирается меньше единицы для улучшения сходимости.

После решения уравнения (6) на интервале [0, $\pi/2$] определяется значение угла θ_m , при котором погрешность аппроксимации принимает максимальное значение:

$$\varepsilon_{m} = \max_{\theta \in [0, \pi/2]} \left(\sin\left(\theta\right) - f\left(\theta\right) \frac{\sum_{k=0}^{n} a_{k} f^{2k}\left(\theta\right)}{1 + \sum_{k=\dots}^{n} b_{k} f^{2k}\left(\theta\right)} \right).$$

Если $\varepsilon_m \approx \varepsilon$, где ε погрешность аппроксимации, вычисленная при решении системы уравнения (8), то коэффициенты аппроксимации вычислены. Если $\varepsilon_m > \varepsilon$, то из множества точек чебышевского альтернанса $\theta_0, \theta_1, \theta_2, ..., \theta_{2n+1}$ определяется ближайшая точка $\theta_j \kappa \theta_m$, затем принимается $\theta_j = \theta_m$. После этого на скорректированном множестве точек альтернанса вычисляются коэффициенты чебышевской интерполяции решением уравнения (8). Итерации продолжаются до тех пор, пока не будет выполнено условие $\varepsilon_m \approx \varepsilon$. Блок-схема алгоритма аппроксимационного метода приведена на рис. 3.

Рис. 3. Блок-схема алгоритма чебышевской аппроксимации дробно-рациональной функцией

После коррекции деформации сигнала получаем выходной сигнал, имеющий фазовый сдвиг

$$u_{1s} = u_0 \sin(\theta);$$
$$u_{1c} = u_0 \cos(\theta + \psi).$$

Тогда, избавляясь от фазового сдвига, получаем

$$u_{s}(\theta) = u_{0}\sin(\theta); \qquad (9)$$

$$u_{c}(\theta) = u_{0}\cos(\theta) = \frac{u_{1c}(\theta) + u_{0}\sin(\theta)\sin(\psi)}{\cos(\psi)}.$$
(10)

Функциональная схема измерения угла и угловой скорости. Вычислять угол θ с помощью функции $\theta = \operatorname{arctg}(u_s(\theta)/u_c(\theta))$ не рекомендуется [7], по-

скольку возникают вычислительные трудности при равенстве нулю функции $u_c(\theta)$ и требуется определение области принадлежности угла вследствие неоднозначности функции арктангенса. Поэтому для вычисления угла используется ФЧД, основанный на ПИ-регуляторе. Функциональная схема для определения угла и угловой скорости приведена на рис. 4.

Рис. 4. Функциональная схема для оценки угла и угловой скорости

Для определения угловой скорости и угла оценивается ошибка

$$e = \sin(\theta)\cos(\theta^*) - \cos(\theta)\sin(\theta^*) \approx \theta - \theta^*,$$

которая поступает на ПИ-регулятор. На выходе ПИ-регулятора (см. рис. 4) формируется угловая скорость, после интегрирования которой формируется сигнал по углу. Пропорциональные звенья с коэффициентами k_1, k_2 нормируют синусоидальный и косинусоидальный сигналы. Коэффициенты ПИ-регулятора k_3, k_4 следует определить таким образом, чтобы уменьшить свободную составляющую переходного процесса в случае изменения угловой скорости. Ограничимся максимальным значением углового ускорения, пусть $\omega'/\omega_0 = k_{\omega}$, где ω' — максимальное значение угловой скорости; ω_0 — номинальная угловая скорость. Максимальную постоянную времени схемы (см. рис. 4) выберем таким образом, чтобы за это время приращение угловой скорости не превышало $\varepsilon_{\omega}\omega_0$, т. е. $(\omega'\tau)/\omega_0 = \varepsilon_{\omega}$. Тогда постоянная времени должна быть равна $\tau = \varepsilon_{\omega}/k_{\omega}$, а минимальный действительный корень свободной составляющей апериодического переходного процесса $p_1 = -1/\tau$. Если принять второй корень $p_2 = 2p_1$, то, определяя при этих условиях коэффициенты ПИ-регулятора, получаем $k_3 = 3|P_1|$,

$$k_4 = 2|P_1|^2$$
 или $k_3 = 3\frac{k_{\omega}}{\varepsilon_{\omega}}, \ k_4 = \frac{2}{9}k_3^2 = 2\frac{k_{\omega}^2}{\varepsilon_{\omega}^2}.$

Моделирование и анализ полученных результатов. Аппроксимационный метод компенсации формы неидеальных синусоидальных сигналов исследовался на компьютерной модели реального индуктивного параметрического датчика для бесконтактного двигателя постоянного тока дискового типа. Для создания моде-

ли и ее исследования применялся пакет MATLAB и его расширение Simulink. Корректировались выходные сигналы датчика, которые вследствие конструктивных особенностей датчика, а также неидеальных характеристик РЭЦ, усилителя и демодулятора имели фазовый сдвиг, постоянное смещение и деформацию сигнала. Выходной сигнал корректировался с использованием предлагаемого аппроксимационного метода. Для коррекции деформированного синусоидального сигнала использовалась функция

$$g_{s}\left(u_{\rm BX}\right) = \frac{a_{0} + a_{2}u_{\rm BX}^{2} + a_{4}u_{\rm BX}^{4}}{1 + b_{2}u_{\rm BX}^{2} + b_{4}u_{\rm BX}^{4}}.$$
(11)

Выходные сигналы датчика u_1 , u_2 отличаются от синусоидальных, максимальная приведенная погрешность, отклонение от синусоидальной функции составляла ~14 %. Фазовый сдвиг сигнала u_2 (θ) был равен ~10°. Смещение сигналов относительно нулевого уровня равно ~5 %.

Коррекция сигнала с помощью дробно-рациональной функции (11), коэффициенты которой получены аппроксимационным методом, позволила сформировать сигналы *u*_s, *u*_c, погрешность которых относительно синусоидального сигнала составляла менее 1 %. Неидеальные выходные сигналы реального индуктивного датчика, имеющие фазовый сдвиг, смещение и деформацию синусоидального сигнала, приведены на рис. 5.

Рис. 5. Выходные сигналы реального индуктивного датчика при постоянной скорости вращения

После устранения искажения фазового сдвига, смещения выходного сигнала датчика с помощью предлагаемого метода, скорректированные сигналы, полученные с достаточной для практического применения точностью, представляют собой синусоидальную и косинусоидальную функции угла поворота ротора (рис. 6). Угол поворота ротора, определенный по этим сигналам, приведен на рис. 7.

Рис. 6. Сигналы индуктивного датчика после компенсации

Рис. 7. Угол положения ротора, определенный по компенсированным сигналам индуктивного датчика при постоянной скорости вращения

Заключение. Предложена методика обработки неидеального сигнала индуктивного датчика, основанная на коррекции передаточной характеристики индуктивного датчика положения ротора с помощью аппроксимации функцией преобразования дробно-рациональной функции и алгоритмов наилучшего (чебышевского) приближения. Использование предложенного метода позволяет повысить точность путем увеличения степени полиномов числителя и знаменателя дробно-рациональной функции, компенсировать деформацию выходного сигнала датчика и повысить точность определения угла поворота ротора двигателя. Это и является основным преимуществом предлагаемого метода. Эффективность коррекции деформированного сигнала подтверждена расчетами и исследованием на компьютерной модели в системе MATLAB. Исследование на компьютерной модели реального индуктивного датчика с использованием дробно-рациональной функциии вида (11) показало, что без применения коррекции максимальное отклонение углового положения ротора от его действительного значения, вычисленное по некомпенсированным сигналам датчика, составляет ~2°, а после коррекции сигналов ~0,07°.

ЛИТЕРАТУРА

1. *Аракелян А.К., Афанасьев А.А.* Вентильные электрические машины и регулируемый электропривод, Кн. 1. Вентильные электрические машины. М.: Энергоатомиздат, 1997. 509 с.

2. *Цаценкин В.К.* Безредукторный автоматизированный электропривод с вентильными двигателями. М.: Изд-во МЭИ, 1991. 240 с.

3. Овчинников И.Е. Теория вентильных электрических двигателей. Л.: Наука, 1985. 164 с.

4. *Le H.T., Hoang H.V., Jeon J.W.* Efficient method for correction and interpolation signal of magnetic encoders // 6th IEEE Int. Conf. on Industrial Informatics. 2008. P. 1383–1388.

DOI: 10.1109/INDIN.2008.4618320 URL: http://ieeexplore.ieee.org/document/4618320

5. *Balemi S.* Automatic calibration of sinusoidal encoder signals // IFAC Proceedings Volumes. 2005. Vol. 38. No. 1. P. 68–73. DOI: 10.3182/20050703-6-CZ-1902.01190

URL: https://www.sciencedirect.com/science/article/pii/S1474667016372020

6. *Hoang H.V., Jeon J.W.* Signal compensation and extraction of high resolution position for sinusoidal magnetic encoders // Int. Conf. on Control, Automation and Systems. 2007. P. 1368–1373. DOI: 10.1109/ICCAS.2007.4406551 URL: http://ieeexplore.ieee.org/document/4406551

7. *Hoang H.V., Jeon J.W.* An efficient approach to correct the signals and generate high-resolution quadrature pulses for encoders // IEEE Transactions on Industrial Electronics. 2011. Vol. 58. No. 8. P. 3634–3646. DOI: 10.1109/TIE.2010.2093472 URL: http://ieeexplore.ieee.org/document/5639048

8. *Hwang S.H., Kim D.Y., Kim J.M., Jang D.H.* Signal compensation for analog rotor position errors due to nonideal sinusoidal encoder signals // Journal of Power Electronics. 2014. Vol. 14. No. 1. P. 82–91.

9. *Hoseinnezhad R., Bad-Hadiashar A., Harding P.* Calibration of resolver sensors in electromechanical bracing system: A modified recursive weighted least-squares approach // IEEE Transaction on Industrial Electronics. 2007. Vol. 54. No. 2. P. 1052–1060. DOI: 10.1109/TIE.2007.893049 URL: http://ieeexplore.ieee.org/document/4140626

10. *Енин В.Н., Степанов А.В.* Коррекция характеристики индуктивного датчика положения ротора бесконтактного двигателя постоянного тока дискового типа // Радиостроение. 2017. № 2. С. 37–53. URL: http://www.radiovega.su/jour/article/view/93

11. Ремез Е.Я. Основы численных методов чебышевского приближения. Киев: Наукова думка, 1969. 623 с.

Енин Виталий Николаевич — д-р техн. наук, профессор кафедры «Электротехника и промышленная электроника» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Степанов Анатолий Владимирович — д-р техн. наук, профессор кафедры «Электротехника и промышленная электроника» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Просьба ссылаться на эту статью следующим образом:

Енин В.Н., Степанов А.В. Компенсация формы неидеальных сигналов индуктивных датчиков положения ротора для бесконтактных двигателей постоянного тока // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2018. № 2. С. 15–26. DOI: 10.18698/0236-3933-2018-2-15-26 Компенсация формы неидеальных сигналов индуктивных датчиков положения ротора...

COMPENSATING FOR NON-IDEAL SIGNAL SHAPE IN INDUCTIVE ROTOR POSITION SENSORS FOR BRUSHLESS DIRECT CURRENT MOTORS

V.N. Enin A.V. Stepanov enin@bmstu.ru stepanov.bmstu@gmail.com

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
The article suggests a method of compensating for non-	Inductive sensor, non-ideal signals,
ideal signal shape in an inductive rotor position sensor for	fractional rational function, signal
a brushless direct current motor. The method is based on	correction, MATLAB
correcting the non-ideal signal by means of a fractional	
rational function. We used best-estimate iterative algo-	
rithms of E.Ya. Remez in order to determine fitting param-	
eters. The method suggested makes it possible to correct	
distortion, phase shift and bias of a non-ideal sine signal	
from the inductive sensor. We used a computer simulation	
to study the method presented in order to compensate for a	Received 23.06.2017
non-ideal signal employing the MATLAB software package	© BMSTU, 2018

REFERENCES

[1] Arakelyan A.K., Afanas'yev A.A. Ventil'nye elektricheskie mashiny i reguliruemyy elektroprivod. Kn. 1. Ventil'nye elektricheskie mashiny [Brushless DC electric machines and controlled electric drive. Vol. 1. Brushless DC electric machines]. Moscow, Energoatomizdat Publ., 1997. 509 p.

[2] Tsatsenkin V.K. Bezreduktornyy avtomatizirovannyy elektroprivod s ventil'nymi dvigatelyami[Gearless automated electric drive with brushless DC electric motors]. Moscow, MEI Publ., 1991.240 p.

[3] Ovchinnikov I.E. Teoriya ventil'nykh elektricheskikh dvigateley [Theory of brushless DC electric motors]. Leningrad, Nauka Publ., 1985. 164 p.

[4] Le H.T., Hoang H.V., Jeon J.W. Efficient method for correction and interpolation signal of magnetic encoders. *6th IEEE Int. Conf. on Industrial Informatics*, 2008, pp. 1383–1388.

DOI: 10.1109/INDIN.2008.4618320 Available at: http://ieeexplore.ieee.org/document/4618320

[5] Balemi S. Automatic calibration of sinusoidal encoder signals. *IFAC Proceedings Volumes*, 2005, vol. 38, no. 1, pp. 68–73. DOI: 10.3182/20050703-6-CZ-1902.01190

Available at: https://www.sciencedirect.com/science/article/pii/S1474667016372020

[6] Hoang H.V., Jeon J.W. Signal compensation and extraction of high resolution position for sinusoidal magnetic encoders. *Int. Conf. on Control, Automation and Systems*, 2007, pp. 1368–1373. DOI: 10.1109/ICCAS.2007.4406551 Available at: http://ieeexplore.ieee.org/document/4406551

[7] Hoang H.V., Jeon J.W. An efficient approach to correct the signals and generate high-resolution quadrature pulses for encoders. *IEEE Transactions on Industrial Electronics*, 2011, vol. 58, no. 8, pp. 3634–3646. DOI: 10.1109/TIE.2010.2093472

Available at: http://ieeexplore.ieee.org/document/5639048

[8] Hwang S.H., Kim D.Y., Kim J.M., Jang D.H. Signal compensation for analog rotor position errors due to nonideal sinusoidal encoder signals. *Journal of Power Electronics*, 2014, vol. 14, no. 1, pp. 82–91.

[9] Hoseinnezhad R., Bad-Hadiashar A., Harding P. Calibration of resolver sensors in electromechanical bracing system: A modified recursive weighted least-squares approach. *IEEE Transaction on Industrial Electronics*, 2007, vol. 54, no. 2, pp. 1052–1060. DOI: 10.1109/TIE.2007.893049 Available at: http://ieeexplore.ieee.org/document/4140626

[10] Enin V.N., Stepanov A.V. Characteristic correction of the inductive rotor position sensor of contactless direct current motor of the disc type. *Radiostroenie* [Radio Engineering], 2017, no. 2, pp. 37–53. Available at: http://www.radiovega.su/jour/article/view/93

[11] Remez E.Ya. Osnovy chislennykh metodov Chebyshevskogo priblizheniya [Foundations of numerical methods with Chebyshev approximation]. Kiev, Naukova dumka Publ., 1969. 623 p.

Enin V.N. — Dr. Sc. (Eng.), Professor, Department of Electrical Engineering and Industrial Electronics, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Stepanov A.V. — Dr. Sc. (Eng.), Professor, Department of Electrical Engineering and Industrial Electronics, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Please cite this article in English as:

EninV.N., Stepanov A.V. Compensating for Non-Ideal Signal Shape in Inductive Rotor Position Sensors for Brushless Direct Current Motors. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr.* [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2018, no. 2, pp. 15–26 (in Russ.). DOI: 10.18698/0236-3933-2018-2-15-26