
22  ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2019. № 2 

UDC 004.056:519.832.4  DOI: 10.18698/0236-3933-2019-2-22-39 

SADDLE POINT SEARCH ALGORITHM FOR THE PROBLEM  
OF SITE PROTECTION LEVEL ASSIGNMENT BASED ON SEARCH  
OF SIMPLICES’ FACES ON HYPERPLANES OF EQUAL DIMENSION 

A.Yu. Bykov abykov@bmstu.ru 
M.V. Grishunin  grishunin-mv@ya.ru 
I.A. Krygin  krygin.ia@gmail.com 

Bauman Moscow State Technical University, Moscow, Russian Federation 

Abstract Keywords 
This paper deals with a continuous zero-sum game 
with constraints on resources between a defender 
allocating resources for protection of sites and an 
attacker choosing sites for attack. The problem is 
formulated so that each player would have to solve 
its own linear program with a fixed solution of the 
other player. We show that in this case the saddle 
point is located on the faces of simplices defining 
feasible solutions. We propose an algorithm of sad-
dle point search based on search of the simplices’ 
faces on hyperplanes of equal dimension. Each 
possible face is defined using a boolean vector defin-
ing states of variables and problem constraints. The 
search of faces is reduced to the search of feasible 
boolean vectors. In order to reduce computational 
complexity of the search we formulate the rules for 
removing patently unfeasible faces. Each point of a 
face belonging to an (m–1)-dimensional hyperplane  
is defined using m points of the hyperplane.  
We created an algorithm for generating these 
points. Two systems of linear equations must be 
solved in order to find the saddle point if it located 
on the faces of simplices belonging to hyperplanes 
of equal dimension. We created a generic algorithm 
of saddle point search on the faces located on hy-
perplanes of equal dimension. We present an exam-
ple of solving a problem and the results of computa-
tional experiments  

Information security, game  
theory, zero-sum game, linear 
programming, saddle point,  
linear equations system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Received 14.05.2018 
© Author(s), 2019 

 
Introduction. We consider a problem of assigning protection level for different 
sites (servers, workstations, etc.) in a certain system. These sites store data of dif-
ferent degree of confidentiality or importance and require different protection 



Saddle Point Search Algorithm for the Problem of Site Protection Level Assignment…

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2019. № 2 23 

levels. This approach can also be applied to nodes of a computational network in 
intrusion prevention systems; the nodes can be of greater or lesser importance. 
The resources for site protection are usually limited. The resources may include 
money, computational resources required for protection software and so on. 

Game theory is often used for solving the information protection problems. 
As a rule, there are two players: a defender and an attacker, although other 
interpretations are possible. The examples of attacker and defender games are 
presented in [1–9]. The examples of games with multiple players are presented in 
[10–12]; a game with a theoretically infinite number of players (mean field games) 
is considered in [13]. 

Equilibrium states are often used as problem solution in game theory. It is a 
saddle point for zero-sum games and a Nash equilibrium state for games with 
non-opposing interests.  

In this paper we consider an algorithm of saddle point search in the site 
protection level assignment problem. This is a zero-sum game; we use a risk-
oriented approach to define the utility function as possible damage stemming 
from site security breach. The problem setting is similar to the ones presented in 
[14, 15]; but its character is more generic. 

1. Statement of the problem of site protection level assignment.  
1.1. Input data. Basis sets. 
1. 1 2,  , ,   mZ z z z  — set of sites to be protected, indexed  

by 1, 2,  ,  .M m  
2. 1 2,  , ,   lR r r r  — set of limited protection resources indexed  

by 1, 2,  ,  .L l  
3. 1 2, , ,  sN n n n  — set of limited attack resources indexed  

by 1, 2,  , S s . 
Parameters of the elements of the sets and the relationships between them. 
1. 0,      iw i M  — possible damage (site cost) if security of the i-th site 

is breached. 
2.   0, 1 ,     pr ip i M  — probability (possibility) of preventing an  

attack on the i-th site if it is protected. 
3.  0, 1  ,      ,    kia k L i M  — normalized value of the k-th limited  

resource used for protecting the i-th site. The total resource value is equal to 
one (the resources’ values can be used without normalization if necessary). 

4. 0, 1 ,kb k L  — maximum normalized value of the k-th limited 
protection resource. 
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5.  0, 1  ,      ,      kiс k S i M  — normalized value of the k-th limited re-
source used for attacking the i-th site. The total resource value is equal to one 
(the resources’ values can be used without normalization if necessary). 

6.   0,1 ,  kd k S  — maximum normalized value of the k-th limited at-
tack resource. 

1.2. Decision variables. We introduce a variable 0, 1 ,     ip i M  cor-
responding to the site protection level (protection probability). These variables 
form a vector P . For the attacker we introduce a variable 0, 1 ,     iq i M  
corresponding to importance of attacking a site (attack probability). These var-
iables form a vector .Q  

1.3. Utility functions of the players. The utility functions of the players are 
defined by damage to the defender. The average damage can be given by as  

 max   prevent   
   

,    ,  i i pr i i i i
i M i M

U P Q U Q U P Q w q p w p q , (1) 

where max 
 

  i i
i M

U Q w q  is maximum damage that can be done by the  

attacker if these is no protection; prevent   
 

,     pr i i i i
i M

U P Q p w p q  is damage  

prevented by the defender. 
The defender wishes to minimize the utility function, the attacker wishes 

to maximize it. 
1.4. Constraints. The system of constraints imposed on the protection re-

sources defining the set of feasible alternatives feas
P  is given by 

 feas
 

:        ,     P
ki i k

i M
a p b k L . (2) 

The system of constraint imposed on the attack resources defining the set 
of feasible alternatives feas

Q  is given by 

 
 

feas :      ,     Q
ki i k

i M
c q d k S . (3) 

We assume that the system of constraints (2) and (3) do not allow the 
players to choose the solutions consisting only of ones (total protection or total 
attack), as this this case the solutions are optimal, and the problem becomes 
trivial. 
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Thus, a linear program (LP) must be solved for finding the decision varia-
bles (unknown vectors P  or )Q  if the other player’s solution is fixed.  

We consider the algorithms of saddle point search on the faces of simplic-
es defined in the m-dimensional spaces by the systems of constraints (2) и (3). 

A saddle point is a pair of vectors *P  и *Q  satisfying the following condi-
tions 

 
fea

* * *

* * *
fea

s

s

,       ,  ,    ;

, , , .

P

Q

P Q Q

P Q P Q

U U P P

U U Q
 (4) 

2. Algorithms of saddle point search on the faces of simplices based on 
search of faces. The level set method for convex-concave function saddle point 
search is proposed in [16] and earlier papers. This method is approximate and 
requires solving convex programming problems including ones with implicit 
objective function. It is also shown in [16] that a saddle point always exists with 
the given conditions. If an LP solution exists it is located on the boundary of a 
simplex (it can be in a vertex or there may a set of solutions located on the same 
face). 

The saddle point defined by *P  и *Q  can be located in the vertices of the 
simplices defined by (2) и (3) as well as on the faces of the simplices. In this 
case the vertices of the simplices can be considered as a special case when using 
this method. We consider an algorithm of saddle point search if it is located on 
the faces of simplices defined by constraints (2) and (3) and conditions

0, 1 ,  0, 1 ,    i ip q i M . 
The simplices (polygons of feasible solutions) are in the m-dimensional 

metric spaces. In this case each of the constraints (2) and (3) defines in the 
space an (m–1)-dimensional hyperplane if an inequality becomes an equality. 
The feasible solutions are located inside unit hypercubes because 

0, 1 ,     ip i M  and 0, 1 ,      .iq i M  The hypercubes are bounded by 
(m–1)-dimensional hyperplanes given by equations 0,      ,   1, i ip i M p   

   i M for the defender and 0,      ,   1,     i iq i M q i M  for the attacker. 
Thus, the simplices are bounded by hyperplanes defined by constraints (2)  
и (3) (if inequalities become equalities) and hyperplanes being the bounds of 
the hypercubes. If possible, the intersection of two (m–1)-dimensional hyper-
planes is an (m–2)-dimensional hyperplane. If possible, the intersection of 
three (m–1)-dimensional hyperplanes is an (m–3)-dimensional hyperplane 
and so on. A special point of the m-dimensional space in this case is a zero-
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dimensional hyperplane. The faces of the simplices can belong to hyperplanes 
of different dimension (the terms face, edge, vertex are used for in 3-dimen-
sional case). We consider the algorithm of saddle point search on the faces of 
simplices based on search of faces. 

2.1. Basis of the algorithm of the exhaustive search of the simplices’ faces. In 
order to define a point on an (m–1)-dimensional hyperplane defining a space of 
the same dimension it is necessary to find m different points. These points should 
not simultaneously be on any of the (m–2)-dimensional hyperplanes belonging 
to the initial (m–1)-dimensional space. For example, three points of a plane 
defining two-dimensional space in the initial 3-dimensional space should not be 
on the same line (analogy of the points defining (m–1) linearly independent 
vectors forming the basis and the point defining the center of coordinates).  

Let 1 2,  ,  ,  mP P P  be the points of a hyperplane a simplex face in the 
defender space is located in. These points may not be feasible from the standpoint 
of constraints (2) or the conditions 0, 1  ,      .ip i M  The main condition is 
that all the points must be located on any single (m–2)-dimensional hyperplane 
belonging to the original (m–1)-dimensional space. Then any point of the (m–1)-

dimensional hyperplane can be given by as 
 

    , i i

i M
P P  where coefficients 

i  do not have to be positive; they must meet the normalization condition 

 
1i

i M
 (the sum should not necessary be equal to one, it can be any  

non-zero value). The same goes for the attacker. 1 2,  ,  ,  mQ Q Q  are points 
of a hyperplane where a simplex face is located. Any point of (m–1)-dimensional 

hyperplane can be given by as 
 

       ,i i

i M
Q Q  where 

 
1. i

i M
 We 

introduce the way of obtaining these points.  
We will be searching the saddle point assuming that at least one of the 

constraints (3) on the attacker’s resources is an equality, i.e., at least one limited 
resource is full depleted. Otherwise the attacker would be able of improving its 
utility function by increasing any component iq  which is not equal to one. 

Similarly, we assume that the inequality becomes the equality for at least 
one of the constraints (2) for the defender saddle point. If the opposite is true, 
then some 1ip  can be possibly increased for an infinitely small value with-
out violating the constraint. If iw  and ,    pr ip i M  are not equal to zero this 
can be done provided that 0,iq  as only in this case the defender utility will 
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not improve, and the initial defender solution will satisfy the saddle point con-
dition. With such an increase of ip  (or some of them) the security of the i-th 
site increases [15], and the attacker has no stimulus of increasing iq ; the at-
tacker solution will still satisfy the saddle point condition. In this case the ini-
tial solution of the defender where the resource is not fully depleted can be 
considered a special case of the solution obtained by increasing ,ip when the 
resource is fully depleted.  

We consider definition of hyperplanes of different dimension on the 
example of the defender vector space P  (the attacker hyperplanes are defined in 
the same way). To that end we introduce an l + m + m-dimensional boolean 
vector dPl  (the attacker vector is aPl , the vector dimension is ).s m m  
Components indexed by 1, , l correspond to the constraints (2). If a 
component is equal to one, the inequality in the corresponding constraint (2) 
becomes the equality. This constraint will be referred to as active further on. At 
least one of the components is going to be equal to one.  

The components 1, ,l l m  correspond to the fixed element of the 
solution vector and 1, ,i Mp i  if the component l i  is equal to one. 
Otherwise, the element ip  is not fixed (variable). The components 1  , ,l m  
l m m correspond to the fixed element of the solution vector and 0ip  if the 
component l m i  is equal to one. Otherwise, the element ip  is not fixed. 
Obviously, the vector elements l i  и ,l m i     i M  cannot be equal to one 
at the same time.  

Consider the case of two constraints and three objects ( 2l  and 3).m  
Two-dimensional hyperplanes are defined by the vectors where each of them 
has a single one: 1 0 0 0 0 0 0 0dPl  and   01   0 0 0 0 0 0dPl , as one of the 
constraints (2) must always be active. One-dimensional hyperplanes (lines in 
the 3-dimensional space), are defined by vectors, each of them has two ones: 

11   0 0 0 0 0 0 , 1 01   0 0 0 0 0 , 1 0 01   0 0 0 0 , 1 0 0 01   0 0 0 , 1 0 0 0 01   0 0 , 
1 0 0 0 0 01   0 , 1 0 0 0 0 0 01  , 01  1   0 0 0 0 0 , 01   01   0 0 0 0 , 01   0 01   0 0 0 , 

01   0 0 01   0 0 , 01   0 0 0 01   0 , 01   0 0 0 0 01  . 

Zero-dimensional hyperplanes (a point in the 3-dimensional space) are defined 
by vectors having three ones. Thus, the search of hyperplane comes down to 
search of boolean vectors.  

We need to iterate through all possible combinations of the similar vectors 
considering the following constraints:  
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– at least one of the components 1, …, l for the defender (1, …, s  for the 
attacker) must be equal to one. 

– components l i  and ,     l m i i M  should not be equal to one sim-

ultaneously (the fixed element of the vector P  cannot simultaneously be equal 
to zero and one), the same applies for the attacker. 

Search of vectors is a computationally complex task. We consider supple-
mentary methods for removing patently unfeasible hyperplanes in order to 
reduce computational complexity. 

2.2. Removing unfeasible hyperplanes. The rules of removing hyperplanes 
are formulated as follows.  

1. Remove unfeasible hyperplanes defined by constraints (2) and (3). Some 
of the constraints in (2) and (3) may be unfeasible, i.e., the inequality in a 
constraint will never become the equality (the constraint will not become active) 
because it will not be allowed by other constraints. An LP must be solved in order 
to check feasibility for each of the constraints in (2) and (3).  

For the defender: 

 
feas       

    max ,        ,
P

P
ki ik

i M P
F P a p k L  (5) 

k-th constraint is feasible if the obtained solution will turn the k-th constraint 
inequality into the equality; otherwise, the constraint is unfeasible. 

Similarly, for the attacker an LP must solved for each of the constraints (3): 

 
feas

       
    max ,        ,

Q

Q
ki ik

i M Q
F Q c q k S  (6) 

k-th constraint is feasible if the obtained solution will turn the k-th constraint 
inequality into the equality, otherwise the constraint is unfeasible. 

Gradient vector for the objective functions (5) and (6) is normal to the 
hyperplanes defined by k-th constraint. If the constraint is feasible, the solution 
must be in the corresponding hyperplane. 

The unfeasible constraint of the systems (2) and (3) can be removed. 
2. Remove hyperplanes because of resource shortage. When considering 

vectors that define hyperplanes it is possible to separate decision variables in 

P  and ,Q  into two non-intersecting sets free fixed  ,M M M  freeM   in-

dices of free variables; fixedM  indices of fixed variables; variables’ value can 
be zero or one and they remain constant for all points of a hyperplane.  



Saddle Point Search Algorithm for the Problem of Site Protection Level Assignment…

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2019. № 2 29 

A defender hyperplane can be removed if 
fixed 

    ,    ki i k
i M

k L a p b . In this 

case the resource constraint will be violated for each point of a hyperplane. 
The same can be applied for the attacker; if 

fixed 

    ,    ki i k
i M

k S c cq  then 

the remove the corresponding hyperplane. 
3. Removing hyperplanes because of active constraint’s unfeasibility. 

Consider a certain component of a vector that defines a hyperplane. The vector is 
indexed by 1, …, l for the defender and 1, …, s for the attacker. Assume the 
component’s values is one (the corresponding constraint in system (2) or (3) is 
active). We denote the index of this component with k (constraint index in the 
system (2) or (3)). If 

free fixed   

   ki k ki i
i M i M

a b a p , then the hyperplane 

defined by this vector can be removed as the k-th constraint will not be active. 
Indeed, even if all free variables are equal to one (required resource defined in the 
left-hand side of the inequality) the remaining resource (right-hand side of the 
inequality) will not be depleted. For the attacker this condition is given by as: 

free fixed   

   ki k ki i
i M i M

c qd c . 

2.3. Obtaining points defining a hyperplane. It is necessary to define m 
points in order to define an (m – 1)-dimensional hyperplane. These points may 
not satisfy the constraints (2) and (3) and they may not be contained inside a 
unit hypercube. All these points must not be on any of the (m – 2)-dimen- 
sional hyperplanes being a subset of the original hyperplane. We consider  
two cases. 

1. Consider a vector defining a hyperplane indexed by 1, …, l for the 
defender and  1, …, s  for the attacker. Assume one its components is equal to 
one, the other components are equal to zero within specified ranges (an active 
constraint case). In this case the number of required points is equal to 

free ( )card M . Let the index of this component be k. Then the remaining k-th 

resource for the defender is going to be equal to 
fixed

remain

 
k ki ik

i M

b b a p . 

Then we set the values of free variables for the defender:  

 
remain

1
 0  0  0k

k

b
a

, 
remain

2
0   0   0k

k

b
a

, …, 
free

remain

0 0  0    k

km

b
a

;  
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free1 2, , ...,k k kma a a  are indexed by the set free ,M  free free      .m card M m  

These points turn the inequality in the k-th constraint into the equality. We 
conduct the same procedure for the attacker. 

2. Assume that more than one component of the vector mentioned above  
is equal to one. The number of such components (active constraints) is denoted 
with 1n . The corresponding active constraints are indexed by N  

  1, 2,  , n  (these constraints are indexed separately). Let freem  be the 
number of free variables in vectors P  or Q  (the values for the defender and the 
attacker may differ, but we are going to denote them in the same way in order to 
reduce the number of indices given that the search is conducted separately). Let 

fixedm  be the number of fixed variables in vectors P  or Q  (the values for the 
defender and the attacker may be different). Let fixed 1 K m n m   
be the number of points that define a (K–1)-dimensional hyperplane. Values of 
free variables have to be calculated in order to find each of the K points. Each 
point is calculated by solving a system of n linear equations (the case of active 
constraint, the inequality becomes the equality). We do this in the following way: 
we choose n variables from the set of free variables, the total number of 
combinations is free ,n

m
C  each combination can define one of K points, searching 

through all combinations may not be necessary. We keep the selected n variables 
and set the other free variables equal to zero. Then we formulate a system of n 
equations (the system below is shown for the defender; the similar system is 
formulated for the attacker): 

 remain

 
    ,      .ji i j
i N

a p b j N  (7) 

The variables in (7) are indexed by   1, 2,  , N n , n is the number of 
remaining free variables. If according to Kronecker — Capelli theorem the sys-
tem (7) has a unique solution, we find it and obtain a point of a hyperplane; 
then go to the next freem  choose n combination. If the system does not have 
a solution we go to the next combination. The process is repeated until all K 
points are found.  

2.4. Saddle point search on the faces of simplices on the hyperplanes of 
equal dimension. The solution of an LP is located on the simplex face belong-
ing to a hyperplane with dimension greater than zero (the face is not a point) if 
the objective function gradient vector is normal to the hyperplane. In this case 
the solution of the problem includes all points of the face. In the game with the 
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utility function (1) and constraints (2) and (3) the point *P  must ensure that 
the utility function is maximized on the face of the second player in the vector 
space Q  and is equal for all points on the face. Similarly, the point *Q  on the 
face must ensure that the utility function is minimized on the face of the first 
player in the vector space P  and is equal for all point of the face.  

We consider the saddle point search in case the simplices faces of the de-
fender and the attacker are on the hyperplanes of equal dimension. 

If each face of the defender and the attacker is on the (K–1)-dimensional 

hyperplane this face can be defined by K points. Let 1 2,  ,  ,  KP P P  be the 

points on the face in the vector space P , and 1 2 ,,    ,  KQ Q Q  be the 
points on the face in the vector space Q . We introduce the multipliers 

1 2,  , ,  K  and 1 2,   , .,  K  The saddle point is going to be 

search for as: *

1
   

K i i

i
P P , *

1
.   

K
i i

i
Q Q  

The system of linear equations for the unknown multipliers 1 , 
2 , ,  K  is formulated as follows: 

 

1 2* *

1 3* *

1* *

1

,    ,  ,

,    ,  ,
.................................................

,    ,  ,

1.

K

K i

i

U P Q U P Q

U P Q U P Q

U P Q U P Q
 (8) 

The system of linear equations for the unknown multipliers 1 ,
2 , ,  K  is formulated as follows: 

 

1 2* *

1 3* *

1 * *

1

,    ,  ,

,   ,  ,
...............................................

,    ,  ,

1.

K

K i

i

U P Q U P Q

U P Q U P Q

U P Q U P Q
 (9) 
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If systems of equations (8) and (9) are consistent and there exist the 

unique solutions *P  and *Q  that satisfy the constraints (2) and (3) and the 
saddle point conditions (4), then they define a saddle point. In most cases 
these conditions may not be satisfied simultaneously. In order to iterate 
through all combinations of faces the exhaustive search of the simplices faces is 
required.  

The example of a saddle point on the faces for the two-dimensional case is 
presented in Fig. 1. It is seen that the saddle point is on the faces in the space P  и 
Q , the end points of the faces (vertices) are denoted as 1 and 2 , the saddle point 
itself is denoted as 3. The saddle point value in the space P  ensures that the 
utility function gradient in the space Q  is normal to the face (1, 2). Similarly, the 
anti-gradient of the utility function in the space P  is normal to the face (1, 2). 
The gradient and anti-gradient are shows as separate lines coming from the 
center of coordinates. This ensures that the utility function on the faces (1, 2) is 
constant for each player if the other player’s solution is in the point 3. Figure 1 
also shows a solution in case the saddle point is searched for in the space P  on 
the face (1, 2), and in the space Q  on the face (2, 4). In this case the points that 
satisfy the systems (8) and (9) are denoted as 5. Obviously, these points are 
unfeasible. 

Fig. 1. An example of the two-dimensional case of a saddle point on the faces 
belonging to the hyperplanes of equal dimension 

 
It is worth noting that there may be a situation when a saddle point is on 

the faces belonging to the hyperplanes of different dimension. An example for 
the two-dimensional case is shown in Fig. 2. The example is almost identical to 
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Fig. 2. A two-dimensional example of a saddle point on the faces belonging  
to hyperplanes of different dimension 

 
the one shown in Fig. 1, but new constraints are introduced in the space Q  
(two lines coming from the point 3). In this case the point 3 value in the space 
Q  ensures the same values of the utility function on the face defined by points 
(1, 2) in the space P . In this case as a rule the saddle point in the space P  is 
not going to be unique. This will be a certain set of points on the face (1, 2) 
near the point 3, so that the gradient direction in the space Q  defined by these 
points would yield a solution in the point 3 for the attacker. In this example 
the face (1, 2) in the space P  is in the one-dimensional hyperplane, and the 
point 3 in the space Q  is in the zero-dimensional hyperplane. 

2.5. Algorithm of exhaustive search of faces on hyperplanes of equal 
dimension. We assume that the “redundant” constraints have been removed 
from systems (2) and (3) according to Rule 1 from Subsection 2.2 prior to 
starting the algorithm. 

Step 0. Set 1 -theK m  dimension of the considered hyperplanes. Set 
the list of points defining hyperplanes in the attacker space listQ as empty. 

Step 1. Set the initial vector for the defender. The vector defines a K-dimen-
sional hyperplane: 1 0  0  0dPl  (the vector initially contains only one 
element equal to 1, in general, the vector has (m–K) ones). 

Step 2. Check feasibility of the vector dPl  using rules 2 and 3 from Sub-
section 2.2. If the vector is feasible, go to Step 3; otherwise, go to Step 12. 

Step 3. Find the points 1 2 1,  ,   ,  KP P P  of the vector dPl  that define 
a K-dimensional hyperplane using rules formulated in Subsection 2.3. If no 
points are found, go to Step 12.  
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Step 4. If listQ is empty, set the initial vector for the attacker. The vector 
defines a K-dimensional hyperplane 1 0  0  0aPl  (initially the vector 
contains only one element equal to one, in general the vector has m K  ones). 
If the list is not empty, go to Step 7. 

Step 5. Check feasibility of the vector aPl  using rules 2 and 3 from Sub-
section 2.2. If the vector is feasible, go to next Step; otherwise, go to Step 11. 

Step 6. Find points 1 2 1,   ,  , KQ Q Q  for the vector ,aPl  defining a 
K-dimensional hyperplane using rules formulated in Subsection 2.3. If the 
points are found, put the points in the list listQ, go to Step 8. If no points 
found, go to Step 11. 

Step 7. Extract 1 2 1,  ,  ,  KQ Q Q  from the first element of the list 
listQ without removing it. The list pointer goes to the next element. 

Step 8. Solve two systems of equations as described in Subsection 2.4 for 

the points 1 2 1,  ,  ,  KP P P  and 1 2 1,  ,   ,  KQ Q Q . If the unique  

solution exists, find *P  and *,Q   go to next Step; otherwise, go to Step 10. 

Step 9. Check if *P  and *Q  satisfy the saddle point condition according to 
Subsection 2.4. If the conditions are satisfied, the saddle point has been found, 
terminate the algorithm; otherwise, go to next Step  

Step 10. If listQ is ready to be used (full), extract the next element (points 
1 2 1,  ,  ,  KQ Q Q ) without removing it; the pointer goes to the next  

element. If the pointer is not at the end of the list, go to Step 8; otherwise, go to 
Step 12. If the list listQ is not ready to be used (not full), go to next Step. 

Step 11. Using the current vector defining the attacker hyperplane aPl , 

calculate the next vector aPl , defining another hyperplane of the same  
dimension using rules of vector search described in Subsection 2.1. If the next 
vector is found, go to Step 5; otherwise, set the list listQ as ready to be used 
(full), go to next Step. 

Step 12. Using the current vector defining the defender hyperplane dPl , 

calculate the next vector dPl , defining the other hyperplane of the same di-
mension using rules of vector search described in Subsection 2.1. If this vector 
exists, go to Step 2. If the vector search is completed, go to next Step. 

Step 13. If 0K , set 1K K , clear listQ, go to Step 1; otherwise, stop, 
face search is finished, the saddle point is not found. 
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The list of points listQ defining hyperplanes is used to speed up the algo-
rithm, so that the algorithm would not have to generate the same set of hyper-
planes in the attacker space for different hyperplanes of the same dimension of 
the defender space.  

3. Example of solving a problem. We consider an example of solving  
a problem with the following parameters: 8 sites, 4 limited protection resources,  
1 limited attacker resource.  

The sites can represent servers in some automated system. Possible dam-
age values in case of site security breach (in conditional units) and breach pre-
vention probabilities using protection resources are shown in Table 1. 

Table 1 

Site damage and prevention probability values 

Damage ,iw cond. units 4000 10 000 3000 9000 5000 9500 10 000 8000 

Probability pprevent i  0.8 0.99 0.7 0.95 0.85 0.9 0.5 0.92 
 
The limited protection resources include: protection cost (not normalized), 

CPU resources, RAM resources, disk memory resources. The defender resources’ 
parameters (coefficients in the constraint system (2)) are presented in Table 2. 

Table 2 

Defender resource constraint system parameters 

Constraint 
No. Coefficient value in the left-hand side of the constraints, kia  Values of kb  

1 100 1000 200 900 400 500 1200 1100 3000 
2 0.03 0.2 0.05 0.15 0.3 0.25 0.35 0.1 0.7 
3 0.05 0.15 0.2 0.25 0.3 0.1 0.33 0.35 0.6 
4 0.01 0.05 0.02 0.05 0.02 0.01 0.01 0.01 0.2 

 
One constraint is imposed on the attacker — cost constraint (cost data is 

shown without normalization), the parameters of this resource for the attacker 
are shown in Table 3. 

Table 3 
Attacker resource constraint system parameters 

Constraint 
No. Coefficient values in the left-hand side of the constraints, 1ic  Value of 1d  

1 50 600 60 500 100 120 1000 550 1500 



 A.Yu. Bykov, M.V. Grishunin, I.A. Krygin

36   ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2019. № 2 

The constraints 1 and 4 were removed according to rules formulated in 
Subsection 2.2 for the given input data. A saddle point on the 4-dimensional 
hyperplanes defined by 5 different points was found as the result of the search 
of the faces belonging to hyperplanes of equal dimension using the presented 
algorithm.  

The components of the boolean vector ,dPl  defining a hyperplane the 
solution for the defender space is in are presented in Table 4 (last row).  

Table 4 

Boolean vector ( )dPl  components, defining a hyperplane in the defender space 

Constraint 
No. 

Corresponding components  
of ip  are equal to one 

Corresponding components  
of ip  are equal to zero 

2 3 1p  2p  3p  4p  5p  6p  7p  8p  1p  2p  3p  4p  5p  6p  7p  8p  
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 

The components of the boolean vector ,aPl  defining a hyperplane the 
solution for the defender space is in are presented in Table 5 (last row).  

Table 5 

Boolean vector ( )aPl  components, defining a hyperplane in the attacker space 

Constraint 
No. 

Corresponding components  
of iq  are equal to one 

Corresponding components  
of iq  are equal to zero 

1 1q  2q  3q  4q  5q  6q  7q  8q  1q  2q  3q  4q  5q  6q  7q  8q  

1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 

Component values of the vectors P  and Q  defining the saddle point are 
shown in Fig. 6. The utility function value for this solution is 19483.3 conditional 
units. 

Table 6 
Obtained saddle point solution 

P  1 0.404 0 0.468 0.521 0.971 0 0.340 
Q  1 0.215 1 0.414 1 0.166 0.564 0.674 

We also conducted computational experiments to determine the frequency of 
finding solution when searching on hyperplanes of different dimension 
(sometimes there is no solution). To that end we generated the input data using 
pseudorandom number generators; the number of facilities was equal to 5,  
the number of limited resources for the defender and the attacker was equal  
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to 4. We solved 1000 problems. In three cases out of 1000 (0.3 %) the solution on 
the faces belonging to hyperplanes of equal dimension was not found. In this case 
it is necessary to conduct search of the faces belonging to hyperplanes of different 
dimension which is beyond the scope of this paper. We should note that if input 
data was not generated using pseudorandom number generators the probability 
of repeating the same or close values for certain parameters in the input data 
would be significantly higher. In this case the probability of not finding a solution 
using the proposed algorithm will be higher.  

Conclusion. In this paper we presented a continuous two player zero-sum 
game with constraints imposed on the resources defining site protection level 
and the choice of site to be attacked. Each player solves a linear program for 
the fixed solution of the other player. A saddle point exists for this problem 
and it is on the faces of simplices. Two systems of linear equations have to be 
solved in order to find the saddle point if it is located on the faces of simplices 
belonging to hyperplanes of equal dimensions. One system of linear equations 
defines the defender solution, the other — the attacker solution. We propose 
using boolean vector to define the hyperplanes. In this case the solution is ob-
tained by searching pairs of hyperplanes for the defender and the attacker. 
This task in turn is reduced to searching pairs of boolean vectors.  

The proposed approach allows finding a saddle points in most cases if the 
input data is generated using pseudorandom number generators. The future 
studies will be devoted to developing algorithms of saddle point search on the 
faces of simplices belonging to hyperplanes of different dimension or when at 
least one of the systems of equations (8) and (9) has multiple solutions. 

Translated by U. Gordeeva 
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