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Abstract

This paper deals with a continuous zero-sum game
with constraints on resources between a defender
allocating resources for protection of sites and an
attacker choosing sites for attack. The problem is
formulated so that each player would have to solve
its own linear program with a fixed solution of the
other player. We show that in this case the saddle
point is located on the faces of simplices defining
feasible solutions. We propose an algorithm of sad-
dle point search based on search of the simplices’
faces on hyperplanes of equal dimension. Each
possible face is defined using a boolean vector defin-
ing states of variables and problem constraints. The
search of faces is reduced to the search of feasible
boolean vectors. In order to reduce computational
complexity of the search we formulate the rules for
removing patently unfeasible faces. Each point of a
face belonging to an (m-1)-dimensional hyperplane
is defined using m points of the hyperplane.
We created an algorithm for generating these
points. Two systems of linear equations must be
solved in order to find the saddle point if it located
on the faces of simplices belonging to hyperplanes
of equal dimension. We created a generic algorithm
of saddle point search on the faces located on hy-
perplanes of equal dimension. We present an exam-
ple of solving a problem and the results of computa-
tional experiments
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Introduction. We consider a problem of assigning protection level for different
sites (servers, workstations, etc.) in a certain system. These sites store data of dif-
ferent degree of confidentiality or importance and require different protection
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levels. This approach can also be applied to nodes of a computational network in
intrusion prevention systems; the nodes can be of greater or lesser importance.
The resources for site protection are usually limited. The resources may include
money, computational resources required for protection software and so on.

Game theory is often used for solving the information protection problems.
As a rule, there are two players: a defender and an attacker, although other
interpretations are possible. The examples of attacker and defender games are
presented in [1-9]. The examples of games with multiple players are presented in
[10-12]; a game with a theoretically infinite number of players (mean field games)
is considered in [13].

Equilibrium states are often used as problem solution in game theory. It is a
saddle point for zero-sum games and a Nash equilibrium state for games with
non-opposing interests.

In this paper we consider an algorithm of saddle point search in the site
protection level assignment problem. This is a zero-sum game; we use a risk-
oriented approach to define the utility function as possible damage stemming
from site security breach. The problem setting is similar to the ones presented in
[14, 15]; but its character is more generic.

1. Statement of the problem of site protection level assignment.

1.1. Input data. Basis sets.

1. Z:{zl, zz,...,zm} — set of sites to be protected, indexed
by M={1,2, ..., m}.

2. R={r1,r2,..., n} — set of limited protection resources indexed
by L={1,2,...,1}.

3. N z{nl,nz,..., ns} — set of limited attack resources indexed

by S={1, 2, s}.

Parameters of the elements of the sets and the relationships between them.

1. w; >0, VieM — possible damage (site cost) if security of the i-th site
is breached.

2. ppri€(0,1), VieM — probability (possibility) of preventing an
attack on the i-th site if it is protected.

3. ai € [0, 1), VkeL, i eM — normalized value of the k-th limited
resource used for protecting the i-th site. The total resource value is equal to
one (the resources’ values can be used without normalization if necessary).

4. b, e (0, l:', Vke L — maximum normalized value of the k-th limited

protection resource.
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5. ci € [0, 1 ), Vk e S,i e M — normalized value of the k-th limited re-

source used for attacking the i-th site. The total resource value is equal to one
(the resources’ values can be used without normalization if necessary).
6. di € (0,1], Vke S — maximum normalized value of the k-th limited at-

tack resource.

1.2. Decision variables. We introduce a variable p; € |:0, 1:|,Vi €M cor-
responding to the site protection level (protection probability). These variables
form a vector P. For the attacker we introduce a variable g; [O, 1:|, VieM
corresponding to importance of attacking a site (attack probability). These var-
iables form a vector Q.

1.3. Utility functions of the players. The utility functions of the players are
defined by damage to the defender. The average damage can be given by as

U(f), Q)zUmax (é) _Uprevent (1_5’ é): . Z wiqi — Z pPTiWiPiQia (1)

ie M ie M

where Umax(é): > wiq; is maximum damage that can be done by the
ieM
attacker if these is no protection; Uprevent (f’, Q)= Y. Ppriwi piqi is damage
ie M
prevented by the defender.
The defender wishes to minimize the utility function, the attacker wishes
to maximize it.
1.4. Constraints. The system of constraints imposed on the protection re-

sources defining the set of feasible alternatives Ag;z is given by

AP

feas *

z ak,-pié bk, VkelL. (2)
ie M

The system of constraint imposed on the attack resources defining the set

(Q)

of feasible alternatives A, * is given by

Q
AD LS cia < i, Vkes. (3)
ieM
We assume that the system of constraints (2) and (3) do not allow the
players to choose the solutions consisting only of ones (total protection or total
attack), as this this case the solutions are optimal, and the problem becomes
trivial.
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Thus, a linear program (LP) must be solved for finding the decision varia-
bles (unknown vectors P or Q) if the other player’s solution is fixed.

We consider the algorithms of saddle point search on the faces of simplic-
es defined in the m-dimensional spaces by the systems of constraints (2) u (3).

A saddle point is a pair of vectors P~ u Q" satisfying the following condi-
tions

U(F. Q) <u(BQ).vEe all);

e€as

N o (@) @

U(P 0 )ZU(P , Q), vQe Al

2. Algorithms of saddle point search on the faces of simplices based on

search of faces. The level set method for convex-concave function saddle point

search is proposed in [16] and earlier papers. This method is approximate and

requires solving convex programming problems including ones with implicit

objective function. It is also shown in [16] that a saddle point always exists with

the given conditions. If an LP solution exists it is located on the boundary of a

simplex (it can be in a vertex or there may a set of solutions located on the same

face).

The saddle point defined by P* u Q" can be located in the vertices of the
simplices defined by (2) u (3) as well as on the faces of the simplices. In this
case the vertices of the simplices can be considered as a special case when using
this method. We consider an algorithm of saddle point search if it is located on
the faces of simplices defined by constraints (2) and (3) and conditions
pie[01], gie[0,1],VieM.

The simplices (polygons of feasible solutions) are in the m-dimensional
metric spaces. In this case each of the constraints (2) and (3) defines in the
space an (m-1)-dimensional hyperplane if an inequality becomes an equality.
The feasible solutions are located inside unit hypercubes because
pi € [0,1], VieM and g; e[O, 1], Vi € M. The hypercubes are bounded by

(m-1)-dimensional hyperplanes given by equations p; =0, Vie M, p; =1,
Vie Mfor the defender and ¢; =0, Vie M, q; =1, Vie M for the attacker.

Thus, the simplices are bounded by hyperplanes defined by constraints (2)
u (3) (if inequalities become equalities) and hyperplanes being the bounds of
the hypercubes. If possible, the intersection of two (m-1)-dimensional hyper-
planes is an (m-2)-dimensional hyperplane. If possible, the intersection of
three (m-1)-dimensional hyperplanes is an (m-3)-dimensional hyperplane
and so on. A special point of the m-dimensional space in this case is a zero-
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dimensional hyperplane. The faces of the simplices can belong to hyperplanes
of different dimension (the terms face, edge, vertex are used for in 3-dimen-
sional case). We consider the algorithm of saddle point search on the faces of
simplices based on search of faces.

2.1. Basis of the algorithm of the exhaustive search of the simplices’ faces. In
order to define a point on an (m-1)-dimensional hyperplane defining a space of
the same dimension it is necessary to find m different points. These points should
not simultaneously be on any of the (m-2)-dimensional hyperplanes belonging
to the initial (m-1)-dimensional space. For example, three points of a plane
defining two-dimensional space in the initial 3-dimensional space should not be
on the same line (analogy of the points defining (m-1) linearly independent
vectors forming the basis and the point defining the center of coordinates).

Let f’(l), f’(z), o B be the points of a hyperplane a simplex face in the
defender space is located in. These points may not be feasible from the standpoint
of constraints (2) or the conditions p; € [O, 1], Vie M. The main condition is

that all the points must be located on any single (m-2)-dimensional hyperplane

belonging to the original (m-1)-dimensional space. Then any point of the (m-1)-

dimensional hyperplane can be given by as P = ol 13(:’)) where coefficients
ieM

i)

") do not have to be positive; they must meet the normalization condition

> a(i) =1 (the sum should not necessary be equal to one, it can be any
ieM

M 60 m

non-zero value). The same goes for the attacker. Q are points

of a hyperplane where a simplex face is located. Any point of (m-1)-dimensional

hyperplane can be given by as Q = 3 [3(1) é(l), where )’ [3(1) =1. We
ieM ie M

introduce the way of obtaining these points.

We will be searching the saddle point assuming that at least one of the
constraints (3) on the attacker’s resources is an equality, i.e., at least one limited
resource is full depleted. Otherwise the attacker would be able of improving its
utility function by increasing any component g; which is not equal to one.

Similarly, we assume that the inequality becomes the equality for at least
one of the constraints (2) for the defender saddle point. If the opposite is true,
then some p; <1 can be possibly increased for an infinitely small value with-
out violating the constraint. If w; and p,,;, Vi e M are not equal to zero this

can be done provided that g; =0, as only in this case the defender utility will
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not improve, and the initial defender solution will satisty the saddle point con-
dition. With such an increase of p; (or some of them) the security of the i-th
site increases [15], and the attacker has no stimulus of increasing g; ; the at-
tacker solution will still satisfy the saddle point condition. In this case the ini-
tial solution of the defender where the resource is not fully depleted can be
considered a special case of the solution obtained by increasing p;, when the
resource is fully depleted.

We consider definition of hyperplanes of different dimension on the
example of the defender vector space P (the attacker hyperplanes are defined in
the same way). To that end we introduce an / + m + m-dimensional boolean

vector Fl(d) (the attacker vector is Fl(a) , the vector dimension is s-+m+m).
Components indexed by 1,...,[correspond to the constraints (2). If a
component is equal to one, the inequality in the corresponding constraint (2)
becomes the equality. This constraint will be referred to as active further on. At
least one of the components is going to be equal to one.

The components [+1,...,I+m correspond to the fixed element of the
solution vector and p;=1,i € M, if the component [+i is equal to one.
Otherwise, the element p; is not fixed (variable). The components [+m+1, ...,

I +m+m correspond to the fixed element of the solution vector and p; =0 if the
component [+m+i is equal to one. Otherwise, the element p; is not fixed.
Obviously, the vector elements [+i u [+m+i, Vi € M cannot be equal to one
at the same time.

Consider the case of two constraints and three objects (/=2 and m =3).
Two-dimensional hyperplanes are defined by the vectors where each of them

has a single one: Pl(4) =[10000000| and Pl(4)=]01000000

constraints (2) must always be active. One-dimensional hyperplanes (lines in
the 3-dimensional space), are defined by vectors, each of them has two ones:

, as one of the

|[11000000], |[10100000], [10010000]|, [10001000]|, [10000100],
[10000010], |[10000001|, 01100000, [01010000]|, 01001000,
|01000100]|, [01000010], [|01000001].

Zero-dimensional hyperplanes (a point in the 3-dimensional space) are defined
by vectors having three ones. Thus, the search of hyperplane comes down to
search of boolean vectors.

We need to iterate through all possible combinations of the similar vectors
considering the following constraints:
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— at least one of the components 1, ..., [ for the defender (1, ..., s for the
attacker) must be equal to one.
- components /+i and [+m+i, Vie M should not be equal to one sim-

ultaneously (the fixed element of the vector P cannot simultaneously be equal
to zero and one), the same applies for the attacker.

Search of vectors is a computationally complex task. We consider supple-
mentary methods for removing patently unfeasible hyperplanes in order to
reduce computational complexity.

2.2. Removing unfeasible hyperplanes. The rules of removing hyperplanes
are formulated as follows.

1. Remove unfeasible hyperplanes defined by constraints (2) and (3). Some
of the constraints in (2) and (3) may be unfeasible, i.e., the inequality in a
constraint will never become the equality (the constraint will not become active)
because it will not be allowed by other constraints. An LP must be solved in order
to check feasibility for each of the constraints in (2) and (3).

For the defender:

Fép)(ﬁ): > akipi— max , Vkel, (5)
ie M ﬁ € Ageas

k-th constraint is feasible if the obtained solution will turn the k-th constraint
inequality into the equality; otherwise, the constraint is unfeasible.

Similarly, for the attacker an LP must solved for each of the constraints (3):

Fk(Q)(Q)z > ckiqi—> max , Vke S, (6)

ieM QEeA foas
k-th constraint is feasible if the obtained solution will turn the k-th constraint
inequality into the equality, otherwise the constraint is unfeasible.

Gradient vector for the objective functions (5) and (6) is normal to the
hyperplanes defined by k-th constraint. If the constraint is feasible, the solution
must be in the corresponding hyperplane.

The unfeasible constraint of the systems (2) and (3) can be removed.

2. Remove hyperplanes because of resource shortage. When considering

vectors that define hyperplanes it is possible to separate decision variables in

(free) (fixed) (free)

P and Q, into two non-intersecting sets M =M UM , M

dices of free variables; M (fixed)

be zero or one and they remain constant for all points of a hyperplane.

indices of fixed variables; variables’ value can
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A defender hyperplane can be removed if 3k €L, >, axp; > by.In this
. (fixed)
ie M

case the resource constraint will be violated for each point of a hyperplane.

The same can be applied for the attacker; if 3k €S, > cxigi > ¢k then
ie mfixed)
the remove the corresponding hyperplane.

3. Removing hyperplanes because of active constraint’s unfeasibility.
Consider a certain component of a vector that defines a hyperplane. The vector is
indexed by 1, ..., | for the defender and 1, ..., s for the attacker. Assume the
component’s values is one (the corresponding constraint in system (2) or (3) is
active). We denote the index of this component with k (constraint index in the
system (2) or (3)). If > ai<by— ). akipi, then the hyperplane

ie M(free) ie M(ﬁxed)
defined by this vector can be removed as the k-th constraint will not be active.
Indeed, even if all free variables are equal to one (required resource defined in the
left-hand side of the inequality) the remaining resource (right-hand side of the
inequality) will not be depleted. For the attacker this condition is given by as:
Y ki<dk = D Ckidi.
ie mtfree) ie mifixed)

2.3. Obtaining points defining a hyperplane. It is necessary to define m
points in order to define an (m - 1)-dimensional hyperplane. These points may
not satisfy the constraints (2) and (3) and they may not be contained inside a
unit hypercube. All these points must not be on any of the (m - 2)-dimen-
sional hyperplanes being a subset of the original hyperplane. We consider
two cases.

1. Consider a vector defining a hyperplane indexed by 1, ..., | for the
defender and 1, ...,s for the attacker. Assume one its components is equal to
one, the other components are equal to zero within specified ranges (an active
constraint case). In this case the number of required points is equal to

card (M (free)). Let the index of this component be k. Then the remaining k-th

resource for the defender is going to be equal to b,gremain) =by — D aipi.
‘e M(ﬁxed)
Then we set the values of free variables for the defender:
b;g remain ) b ]E remain ) b}g remain )
——00...0/, 0 &2=——0...0f,.., 000 ... =—1;
ak1 ak2 a4 \free)
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k1, Ak2> - 4y, (free) are indexed by the set Mifree) - p(free) — ord (M(free)) <m.

These points turn the inequality in the k-th constraint into the equality. We
conduct the same procedure for the attacker.

2. Assume that more than one component of the vector mentioned above
is equal to one. The number of such components (active constraints) is denoted
with #n>1. The corresponding active constraints are indexed by N=

= {1, 2, n} (these constraints are indexed separately). Let m(free) be the

number of free variables in vectors P or Q (the values for the defender and the
attacker may differ, but we are going to denote them in the same way in order to

reduce the number of indices given that the search is conducted separately). Let

fixed)

ml be the number of fixed variables in vectors P or Q (the values for the

ﬁxed)

defender and the attacker may be different). Let K=m — n — m( +1

be the number of points that define a (K-1)-dimensional hyperplane. Values of
free variables have to be calculated in order to find each of the K points. Each
point is calculated by solving a system of n linear equations (the case of active
constraint, the inequality becomes the equality). We do this in the following way:
we choose n variables from the set of free variables, the total number of

combinations is C" (free)? each combination can define one of K points, searching
m

through all combinations may not be necessary. We keep the selected n variables
and set the other free variables equal to zero. Then we formulate a system of n
equations (the system below is shown for the defender; the similar system is
formulated for the attacker):

(remain)

{ Zajipi:bj ,VjEN. (7)

ieN

The variables in (7) are indexed by N :{1, 2, ... n} , n is the number of

remaining free variables. If according to Kronecker — Capelli theorem the sys-
tem (7) has a unique solution, we find it and obtain a point of a hyperplane;

then go to the next m™) choose n combination. If the system does not have
a solution we go to the next combination. The process is repeated until all K
points are found.

2.4. Saddle point search on the faces of simplices on the hyperplanes of
equal dimension. The solution of an LP is located on the simplex face belong-
ing to a hyperplane with dimension greater than zero (the face is not a point) if
the objective function gradient vector is normal to the hyperplane. In this case
the solution of the problem includes all points of the face. In the game with the
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utility function (1) and constraints (2) and (3) the point P* must ensure that
the utility function is maximized on the face of the second player in the vector
space Q and is equal for all points on the face. Similarly, the point Q" on the
face must ensure that the utility function is minimized on the face of the first
player in the vector space P and is equal for all point of the face.

We consider the saddle point search in case the simplices faces of the de-
fender and the attacker are on the hyperplanes of equal dimension.

If each face of the defender and the attacker is on the (K-1)-dimensional

hyperplane this face can be defined by K points. Let 13(1), 13(2), o pk) be the

points on the face in the vector space P, and Q(l), Q(z),..., Q(K) be the

points on the face in the vector space Q. We introduce the multipliers

oc(l), oc(z), oo o™ and B(l), B(z), oo B(K). The saddle point is going to be
K (N _(: K. .
search foras: P* = Za(l)ﬁ(l), Q =2 B(Z) Q(z).
i=1 i=1
The system of linear equations for the unknown multipliers oc(l),
oc(z), oo O(,(K) is formulated as follows:
U(P ,Q(l))=U(f>*, é(z)),
U(P*, Q(I))=U(f>*, 6(3)),
................................................. (8)
U(f’*, Q(l)):U(ﬁ*, Q(K)))
ga(l) =1
i=1
The system of linear equations for the unknown multipliers B(l),
B(z), o B(K) is formulated as follows:
U(P(l), Q*)zU(ﬁ(z), Q*),
U(P(l), Q*)zU(ﬁ“), Q*),
............................................... 9)
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If systems of equations (8) and (9) are consistent and there exist the

unique solutions P and Q" that satisfy the constraints (2) and (3) and the
saddle point conditions (4), then they define a saddle point. In most cases
these conditions may not be satisfied simultaneously. In order to iterate
through all combinations of faces the exhaustive search of the simplices faces is
required.

The example of a saddle point on the faces for the two-dimensional case is
presented in Fig. 1. It is seen that the saddle point is on the faces in the space P u
Q, the end points of the faces (vertices) are denoted as I and 2, the saddle point
itself is denoted as 3. The saddle point value in the space P ensures that the
utility function gradient in the space Q is normal to the face (I, 2). Similarly, the
anti-gradient of the utility function in the space P is normal to the face (I, 2).
The gradient and anti-gradient are shows as separate lines coming from the
center of coordinates. This ensures that the utility function on the faces (1, 2) is
constant for each player if the other player’s solution is in the point 3. Figure 1
also shows a solution in case the saddle point is searched for in the space P on
the face (1, 2), and in the space Q on the face (2, 4). In this case the points that
satisfy the systems (8) and (9) are denoted as 5. Obviously, these points are
unfeasible.
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Fig. 1. An example of the two-dimensional case of a saddle point on the faces
belonging to the hyperplanes of equal dimension

It is worth noting that there may be a situation when a saddle point is on
the faces belonging to the hyperplanes of different dimension. An example for
the two-dimensional case is shown in Fig. 2. The example is almost identical to
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Fig. 2. A two-dimensional example of a saddle point on the faces belonging
to hyperplanes of different dimension

the one shown in Fig. 1, but new constraints are introduced in the space Q
(two lines coming from the point 3). In this case the point 3 value in the space
Q ensures the same values of the utility function on the face defined by points
(1, 2) in the space P. In this case as a rule the saddle point in the space P is
not going to be unique. This will be a certain set of points on the face (I, 2)
near the point 3, so that the gradient direction in the space Q defined by these
points would yield a solution in the point 3 for the attacker. In this example
the face (1, 2) in the space P is in the one-dimensional hyperplane, and the
point 3 in the space Q is in the zero-dimensional hyperplane.

2.5. Algorithim of exhaustive search of faces on hyperplanes of equal
dimension. We assume that the “redundant” constraints have been removed
from systems (2) and (3) according to Rule 1 from Subsection 2.2 prior to
starting the algorithm.

Step 0. Set K =(m—1)-the dimension of the considered hyperplanes. Set
the list of points defining hyperplanes in the attacker space listQ as empty.

Step 1. Set the initial vector for the defender. The vector defines a K-dimen-

sional hyperplane: ﬁ(d) =H1 ...00 OH (the vector initially contains only one
element equal to 1, in general, the vector has (m-K) ones).

Step 2. Check feasibility of the vector Fl(d) using rules 2 and 3 from Sub-
section 2.2. If the vector is feasible, go to Step 3; otherwise, go to Step 12.

Step 3. Find the points 13(1), 13(2), o pc)

a K-dimensional hyperplane using rules formulated in Subsection 2.3. If no

of the vector l—)i(d) that define

points are found, go to Step 12.
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Step 4. If listQ is empty, set the initial vector for the attacker. The vector
defines a K-dimensional hyperplane Fl(a) = Hl ...00 OH (initially the vector
contains only one element equal to one, in general the vector has (m—K) ones).
If the list is not empty, go to Step 7.

Step 5. Check feasibility of the vector 171(“) using rules 2 and 3 from Sub-
section 2.2. If the vector is feasible, go to next Step; otherwise, go to Step 11.

Step 6. Find points Q(l), Q(z), ey Q(KH)

K-dimensional hyperplane using rules formulated in Subsection 2.3. If the

for the vector Fl(a), defining a

points are found, put the points in the list /istQ, go to Step 8. If no points
found, go to Step 11.

Step 7. Extract Q(l), Q(z), o C)(KH) from the first element of the list

listQ without removing it. The list pointer goes to the next element.
Step 8. Solve two systems of equations as described in Subsection 2.4 for

M p(2) BN and oM, g, . gtk

the points P s e . If the unique

solution exists, find P* and Q, go to next Step; otherwise, go to Step 10.

Step 9. Check if P* and Q" satisfy the saddle point condition according to
Subsection 2.4. If the conditions are satisfied, the saddle point has been found,
terminate the algorithm; otherwise, go to next Step

Step 10. If listQ is ready to be used (full), extract the next element (points

~(1) =(2 ~(K
Q( )’ Q( ), Q(
element. If the pointer is not at the end of the list, go to Step 8; otherwise, go to
Step 12. If the list listQ is not ready to be used (not full), go to next Step.

1 . L .
! )) without removing it; the pointer goes to the next

Step 11. Using the current vector defining the attacker hyperplane ljl(a),

calculate the next vector Fl(a), defining another hyperplane of the same

dimension using rules of vector search described in Subsection 2.1. If the next
vector is found, go to Step 5; otherwise, set the list listQ as ready to be used
(full), go to next Step.

Step 12. Using the current vector defining the defender hyperplane ﬁ(d) ,

calculate the next vector Fl(d) , defining the other hyperplane of the same di-
mension using rules of vector search described in Subsection 2.1. If this vector
exists, go to Step 2. If the vector search is completed, go to next Step.

Step 13. If K>0, set K=K -1, clear listQ, go to Step 1; otherwise, stop,
face search is finished, the saddle point is not found.
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The list of points listQ defining hyperplanes is used to speed up the algo-
rithm, so that the algorithm would not have to generate the same set of hyper-
planes in the attacker space for different hyperplanes of the same dimension of
the defender space.

3. Example of solving a problem. We consider an example of solving
a problem with the following parameters: 8 sites, 4 limited protection resources,
1 limited attacker resource.

The sites can represent servers in some automated system. Possible dam-
age values in case of site security breach (in conditional units) and breach pre-
vention probabilities using protection resources are shown in Table 1.

Table 1

Site damage and prevention probability values

Damage w;,cond. units | 4000 | 10 000 |3000 | 9000|5000 | 9500 |10 000 8000
Probability pprevent i 0.8 0.99 0.7 1095|085 | 0.9 0.5 0.92

The limited protection resources include: protection cost (not normalized),
CPU resources, RAM resources, disk memory resources. The defender resources’
parameters (coefficients in the constraint system (2)) are presented in Table 2.

Table 2

Defender resource constraint system parameters

Cor;\s}t;alnt Coefficient value in the left-hand side of the constraints, a;; | Values of b,
1 100 | 1000 | 200 | 900 | 400 | 500 | 1200 | 1100 3000
2 0.03 | 0.2 [ 005]|0.15| 0.3 | 025 0.35 0.1 0.7
3 0.05|0.15| 0.2 | 025 | 0.3 0.1 | 033 | 0.35 0.6
4 0.01 | 0.05 | 0.02 | 0.05 | 0.02 | 0.01 | 0.01 | 0.01 0.2

One constraint is imposed on the attacker — cost constraint (cost data is
shown without normalization), the parameters of this resource for the attacker
are shown in Table 3.

Table 3
Attacker resource constraint system parameters
Cor;\s}‘;ramt Coefficient values in the left-hand side of the constraints, ¢;; | Value of d,
1 50 | 600 | 60 | 500 | 100 | 120 | 1000 | 550 1500
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The constraints 1 and 4 were removed according to rules formulated in
Subsection 2.2 for the given input data. A saddle point on the 4-dimensional
hyperplanes defined by 5 different points was found as the result of the search
of the faces belonging to hyperplanes of equal dimension using the presented
algorithm.

The components of the boolean vector Fl(d), defining a hyperplane the
solution for the defender space is in are presented in Table 4 (last row).

Table 4

Boolean vector ﬁ(d) components, defining a hyperplane in the defender space

Constraint Corresponding components Corresponding components
No. of p; are equal to one of p; are equal to zero

3|\ pi| P2 P3| Pa|Ps|Ps|P7 | Ps|Pr| P2 P3| Pal|P5]| Ps| P7 ]| Ps
1 1 0] 0 Ool0j]O0O]O]O]O]|O 1 0010 1 0

The components of the boolean vector ﬁ(a), defining a hyperplane the
solution for the defender space is in are presented in Table 5 (last row).

Table 5

Boolean vector I_)i(a) components, defining a hyperplane in the attacker space

Constraint Corresponding components Corresponding components
No. of g; are equal to one of g; are equal to zero
! Q|| B9 || | D | B |D | D@ |DB|9 |5 |9|D | B
1 10170} 1rj0;0(0j0}0j0|0]0]|0]O0]O

Component values of the vectors P and Q defining the saddle point are
shown in Fig. 6. The utility function value for this solution is 19483.3 conditional

units.
Table 6
Obtained saddle point solution
p 1 0.404 0 0.468 0.521 0.971 0 0.340
(j 1 0.215 1 0.414 1 0.166 0.564 0.674

We also conducted computational experiments to determine the frequency of
finding solution when searching on hyperplanes of different dimension
(sometimes there is no solution). To that end we generated the input data using
pseudorandom number generators; the number of facilities was equal to 5,
the number of limited resources for the defender and the attacker was equal
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to 4. We solved 1000 problems. In three cases out of 1000 (0.3 %) the solution on
the faces belonging to hyperplanes of equal dimension was not found. In this case
it is necessary to conduct search of the faces belonging to hyperplanes of different
dimension which is beyond the scope of this paper. We should note that if input
data was not generated using pseudorandom number generators the probability
of repeating the same or close values for certain parameters in the input data
would be significantly higher. In this case the probability of not finding a solution
using the proposed algorithm will be higher.

Conclusion. In this paper we presented a continuous two player zero-sum
game with constraints imposed on the resources defining site protection level
and the choice of site to be attacked. Each player solves a linear program for
the fixed solution of the other player. A saddle point exists for this problem
and it is on the faces of simplices. Two systems of linear equations have to be
solved in order to find the saddle point if it is located on the faces of simplices
belonging to hyperplanes of equal dimensions. One system of linear equations
defines the defender solution, the other — the attacker solution. We propose
using boolean vector to define the hyperplanes. In this case the solution is ob-
tained by searching pairs of hyperplanes for the defender and the attacker.
This task in turn is reduced to searching pairs of boolean vectors.

The proposed approach allows finding a saddle points in most cases if the
input data is generated using pseudorandom number generators. The future
studies will be devoted to developing algorithms of saddle point search on the
faces of simplices belonging to hyperplanes of different dimension or when at
least one of the systems of equations (8) and (9) has multiple solutions.

Translated by U. Gordeeva
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