УДК 621.327.5

ХАРАКТЕРИСТИКИ ИЗЛУЧЕНИЯ КОРОТКОДУГОВЫХ КСЕНОНОВЫХ ГАЗОРАЗРЯДНЫХ ЛАМП ВЫСОКОГО ДАВЛЕНИЯ

С.В. Гавриш¹ А.Н. Кондратьев¹ В.В. Логинов¹ Н.Ю. Петренко¹ С.Г. Киреев² svgavr@list.ru pernatiy87@mail.ru stronzo@bk.ru mikolatrue777@gmail.com kireevsg.melitta@gmail.com

¹ Филиал АО «Стелла-К», г. Зеленоград, Москва, Российская Федерация ² ООО «НПП «Мелитта», Москва, Российская Федерация

Аннотация

Исследованы изменения характеристик ксеноновых короткодуговых ламп сверхвысокого давления при напылении на кварцевую оболочку слоя вольфрама в результате нагрева и локальной эрозии электродов. Проанализированы механизмы явлений, происходящих в ксеноновом разряде сверхвысокого давления и катодном пятне, влияющие на распыление электродного материала. Рассмотрены основные последствия появления вольфрамовых налетов на внутренней поверхности оболочки лампы — снижение оптической прозрачности и механической прочности кварцевого стекла, повышение температуры колбы, изменение спектральных характеристик и пространственного распределения излучения газоразрядной лампы. Разработанная оригинальная методика изучения параметров излучения газоразрядной лампы, построенная на совмещении оптической оси фотометра с осью лампы, проходящей сквозь катодное пятно и исследуемый (прозрачный или напыленный) сегмент оболочки, позволила без изменения параметров плазмы сравнить характеристики излучения лампы. Выполненный термодинамический анализ подтвердил отсутствие химического взаимодействия слоя вольфрама с кварцевым стеклом. Спектральное распределение излучения ксенонового разряда в видимом и ИК-диапазонах различно для прозрачной колбы и колбы с вольфрамовым пятном, что связано с размерами частиц слоя вольфрама на колбе лампы. Исследовано пространственное

Ключевые слова

Газоразрядная лампа, напыление, спектр, пространственное распределение излучения, температурное поле

4.04.2019
2019

Введение. При разработке импульсных газоразрядных источников излучения для оптико-электронных систем (ОЭС) гражданского [1, 2] и специального назначения [3] особое внимание уделяют требованиям обеспечения надежности. Эта характеристика определяется возможностью сохранения разрядным прибором спектральных, энергетических и временных параметров излучения в течение срока службы в интервалах, определяемых функциональными особенностями ОЭС.

Одним из широко используемых в ОЭС газоразрядных источников излучения является короткодуговая лампа (КДЛ) с разрядом в ксеноне сверхвысокого давления (СВД) [1–5]. Для обеспечения высокой яркости излучения в данном классе газоразрядных ламп используются короткие (1...5 мм) межэлектродные расстояния, поэтому разряд фактически ограничен вольфрамовыми электродами. Вследствие высоких значений анодно-катодного падения потенциала (для ксенона $U_{ak} = 11$ В [4]) значительная часть (до 30 % [5]) энергии, поступающей в лампу, расходуется на нагрев электродов до температур 2500...3200 К [5]. В результате этого процесса происходит испарение разогретого вольфрама с последующей конденсацией частиц на внутренней поверхности разрядной (кварцевой или сапфировой) колбы, что приводит к изменению параметров излучения газоразрядной лампы СВД. Выявлению последствий напыления вольфрама на оболочку газоразрядной лампы посвящена настоящая работа.

Теоретический анализ. Спектральные характеристики ксенонового разряда СВД в широком диапазоне длин волн имеют непрерывный характер. Цветовая температура ксеноновой дуги СВД в зависимости от конструктивных особенностей газоразрядной лампы имеет значения в пределах 5400...6000 К. Распределение излучения такой дуги в УФ-области спектра характеризуется полным отсутствием линий, причем нижняя граница выходящего из лампы УФ-излучения ограничена поглощением материала колбы ~ 0,22 мкм. Спектральные характеристики излучения ксеноновой дуги СВД в видимом диапазоне представляют собой непрерывное распределение энергии, почти точно воспроизводящее

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2019. № 6

спектр Солнца. В ближней ИК-области спектра, наоборот, имеются несколько интенсивных линий в диапазоне от 0,8 до 1,0 мкм и относительно слабый непрерывный фон.

Основную роль в образовании непрерывного спектра ксеноновой дуги играют процессы излучения, возникающие при торможении электронов с различными скоростями, в поле положительных ионов и при рекомбинации электронов с ионами [4]. Интенсивность этих процессов резко возрастает с увеличением степени ионизации газа, что имеет место в условиях разряда в тяжелых инертных газах. Приведенное описание распределения энергии в спектре излучения дуги СВД остается неизменным в широком диапазоне давлений ксенона и электрических мощностей ламп.

Поскольку короткая дуга стабилизируется электродами, стабильность ее местоположения целиком определяется процессами на поверхности электродов. В этом смысле особое значение имеет наличие так называемого катодного пятна, которое возникает, когда термоэлектронная эмиссия недостаточна для поддержания тока разряда. При этом часть разрядного тока обеспечивается потоком ионов к катоду из области пятна, где происходит усиленная термическая ионизация. Вследствие высокой температуры в катодном пятне прилегающая к нему поверхность катода оплавляется (зонное распыление) и обедняется активатором [6, 7]. В результате катодное пятно перемещается на соседние неоплавленные участки, вызывая смещение дуги. При отсутствии катодного пятна происходит равномерное обгорание и обеднение всей рабочей поверхности катода (равномерное распыление), в этом случае дуга остается стабильной. Подробно данное явление рассмотрено в работах [8, 9]. Таким образом, в течение срока службы можно ожидать появление на оболочке газоразрядной лампы вольфрамовых покрытий двух типов — либо образуется непрерывный слой по всей поверхности кварца, либо дополнительно появляется локализация пятен различного диаметра повышенной плотности, обусловленной эрозией электрода.

Налеты на внутренней поверхности разрядной колбы могут привести к следующим негативным последствиям:

снижению оптического пропускания разрядной оболочки;

 повышению температуры колбы лампы за счет поглощения излучения разряда;

– изменению спектральных характеристик и пространственного распределения (индикатрисы) излучения газоразрядной лампы;

 уменьшению механической прочности колбы при взаимодействии распыленного вольфрама с оксидом кремния (кварцем).

52

Все перечисленные факторы требуют особого учета при разработке газоразрядных ламп данного класса и проведения специальных исследований.

Методика эксперимента. Для проведения экспериментальных работ использовались стандартные и специально разработанные методики. Температурный профиль ламп определяли посредством тепловизионной системы SDS HotFind-LXT пирометрическим способом, основанным на регистрации интенсивности ИК-излучения в дальнем спектральном диапазоне от 7 мкм. Подробно данная методика рассмотрена в работе [10].

Изучение спектров оптического пропускания материалов и напыленных слоев в спектральном диапазоне от 0,2 до 1 мкм выполнялось на спектрофотометре СФ-2000, а для интервала длин волн от 1,2 до 5 мкм применялся ИК фурье-спектрометр ФСМ-1201. Исследование спектральных, энергетических, временных характеристик проводилось на экспериментальной установке, блок-схема которой приведена на рис. 1.

Рис. 1. Блок-схема экспериментальной установки:

1 — исследуемая ксеноновая лампа СВД; 2 — источник питания лампы; 3 — пятно
 вольфрамового напыления; 4 — диафрагма; 5 — линза; 6 — фотоприемное устройство;
 L — расстояние между лампой и фотоприемником; α — угол наклона лампы

Для исследований использовались КДЛ 1, которые устанавливались под углом α таким образом, чтобы катодное пятно и центр запыленного вольфрамом пятна 3 разрядной колбы находились на одной оси с входными окнами спектрометра МДР-204 или других фотоприемных устройств 6. Для исключения попадания в спектральный прибор других излучающих элементов газоразрядной лампы использовалась специальная диафрагма 4, а для проецирования изображения катодного пятна в натуральную величину на входную щель спектрометра 6 устанавливалась линза 5 так, чтобы половина расстояния между лампой и фотоприемником (*L*/2) равнялась ее двойному фокусному расстоянию. После замеров лампа поворачивалась вокруг оси на угол так, чтобы при сохранении ее местоположения исключить влияние налета вольфрама.

В экспериментах использовали газоразрядную лампу СВД типа ДКсШ-500 с межэлектродным расстоянием 1,75 мм и давлением ксенона 12 атм. Лампа работала на постоянном токе 32 А и напряжении 16,5 В. Экспериментальный источник электрического питания КДЛ обеспечивал несколько режимов работы:

 – подачу на лампу стабилизированного напряжения «подпитки» в диапазоне 60...100 В, необходимого для поддержания устойчивого горения плазменного канала от момента прохождения импульса зажигания (30 кВ) до подключения к силовому питанию;

- стабилизацию постоянного тока лампы в диапазоне от 10 до 40 А;

– модуляцию прикладываемого к лампе стабилизированного напряжения в диапазоне регулируемых частот от 1 до 7 кГц с шагом 100 Гц.

Источник электрического питания КДЛ позволял в режиме постоянного тока контролировать ток и напряжение, а при импульсном питании лампы — пиковое значение, длительность, частоты следования импульсов тока и напряжения.

Расчетно-экспериментальные исследования и обсуждение результатов. Для изучения вопроса химического взаимодействия вольфрама с оксидом кремния рассчитаны температурные зависимости стандартной энергии Гиббса для образования реагентов и продуктов возможных реакций (за исключением простых веществ).

Расчет энергии Гиббса проводили по классическому уравнению

$$\Delta G_T^0 = \Delta H_{298}^0 - T \Delta S_{298}^0 + \int_{298}^T c_p dT - T \int_{298}^T \frac{c_p}{T} dT,$$

где ΔG_T^0 — изменение энергии Гиббса; ΔH_{298}^0 — изменение энтальпии исходных веществ и продуктов реакции в стандартном состоянии; ΔS_{298}^0 изменение энтропии исходных веществ и продуктов реакции в стандартном состоянии; *T* — температура процесса.

Для проведения вычислений из литературных источников [11, 12] были взяты стандартные энтальпии (ΔH_{298}^0), энтропии (ΔS_{298}^0) и температурные зависимости теплоемкостей при постоянном давлении ($\Delta c_p(T)$).

Из полученных расчетных данных (рис. 2) следует, что в широком интервале температур энергия Гиббса образования оксида кремния на 250...300 кДж на моль О₂ меньше, чем для оксидов вольфрама. Это значит, что реакции прямого восстановления оксида кремния вольфрамом (1)–(3) энергетически невыгодны.

$$6W + SiO_2 \rightarrow 2W_3O + Si \tag{1}$$

$$W + SiO_2 \rightarrow WO_2 + Si \tag{2}$$

$$\frac{2}{3}W + SiO_2 \rightarrow \frac{2}{3}WO_3 + Si$$
(3)

Рис. 2. Температурная зависимость энергии Гиббса образования оксидов вольфрама и кремния в пересчете на 1 моль О₂

В работах [12, 13] проанализирована система Si–W–O и ее подсистема SiO₂–WO₃, в которых смешанных оксидов кремния и вольфрама не найдено, т. е. реакция восстановления оксида кремния вольфрамом невозможна. Достоверность проведенного анализа подтверждена экспериментально. После разрушения ламп с кварцевой оболочкой образовавшийся налет легко удалялся салфеткой, смоченной в спирте. При этом спектр пропускания кварца восстанавливался полностью, о чем свидетельствуют результаты спектроскопических исследований.

Для исследования влияния потемнения оболочки на спектральное пропускание кварцевого стекла использовались лампы, имеющие на поверхности колбы пятна высокой плотности. Спектры пропускания вырезанного сегмента оболочки с пятном изучались в видимом и ИК-диапазонах (рис. 3). После технохимической промывки и удаления следов воль-

Рис. 3. Спектры пропускания кварцевой оболочки с вольфрамовым напылением (1) и без него (2) в видимом и ИК-диапазонах (*a*, *б*)

фрама спектральные исследования кварцевого сегмента повторялись. Из приведенных на рис. 3 данных следует, что поведение кривых спектральной прозрачности кварца различно в видимом и ИК-диапазонах. Изучение темных налетов под микроскопом позволяет понять характер кривых на рис. 3. Непрерывный слой напыления представляет собой систему упорядоченных частиц размером менее 1 мкм с одиночными каплями размером от 10 до 30 мкм. Учитывая, что размер основного состава частиц слоя вольфрама соизмерим с длиной волны в видимом диапазоне, прохождение света сквозь него сопровождается рассеянием и поглощением энергии. В ИК-диапазоне такого эффекта не наблюдается.

Спектральную границу этого эффекта можно косвенно определить, изучив спектры излучения ксеноновой лампы СВД в видимом диапазоне оптического спектра. Из приведенного на рис. 4 спектрального распределения следует, что до длины волны 1 мкм интенсивность непрерывного фона излучения разряда в ксеноне больше, чем при прохождении света сквозь пятно вольфрама.

Вопрос наблюдаемого на рис. 4 превосходства излучения в интенсивности линий ксенона после прохождения сквозь напыление требует отдельного детального рассмотрения. В ИК-диапазоне спектральные характеристики в обоих случаях практически совпадают.

Пространственное распространение излучения газоразрядной лампы в основном определяется формой и распределением яркости светящегося объема плазмы [14, 15]. Некоторые изменения в пространственное распределение (индикатрису) излучения объема плазмы вносят отражение и

56

Рис. 4. Спектр излучения ксеноновой лампы СВД с вольфрамовым напылением (1) и без него (2)

преломление на поверхности колбы лампы. Эти факторы изменяются за счет появления слоя распыленного вольфрама. Следовательно, надо ожидать изменение индикатрисы излучения газоразрядного источника.

Как и в предыдущих экспериментах, сравнивали пространственное распределение излучения, прошедшего через прозрачную сторону колбы и напыленный на поверхность оболочки слой вольфрама, при идентичных режимах работы лампы. Излучения исследовали с помощью люксметра Аргус-06 в видимом и фотосопротивлением Ge–Au в ИК-диапазонах при повороте лампы на угол β между нормалью к осевой линии разряда и линией визирования фотоприемника. Полученные результаты приведены на рис. 5. Интенсивность излучения в относительных единицах нормирована к максимальному значению показаний фотоприемника. На рис. 5, *а* представлена индикатриса излучения ксеноновой КДЛ СВД в видимом диапазоне.

Как и ожидалось, интенсивность излучения, измеренная в области напыленного пятна (кривая 2), в диапазоне углов поворота лампы от -40° (область анода) до $+20^{\circ}$ уступает по мощности излучению, выходящему из ее прозрачной части (кривая 1). Это обусловлено снижением пропускания оболочки лампы после ее покрытия слоем вольфрама. Одновременно на рис. 5, δ видно, что интенсивность излучения напыленной стороны лампы выше, чем у прозрачной зоны. Можно предположить, что такой эффект связан с отсутствием интенсивных линий разряда ксенона

С.В. Гавриш, А.Н. Кондратьев, В.В. Логинов, Н.Ю. Петренко

Рис. 5. Пространственное распределение излучения ксеноновой лампы СВД в видимом и ИК-диапазонах (*a*, *б*) с вольфрамовым напылением (*2*) и без него (*1*)

в диапазоне более 1,5 мкм, что объясняет поведение кривой 1. В то же время ход кривой 2 (см. рис. 5, δ) свидетельствует о поглощении слоем вольфрама части излучения из видимой области (кривая 1, см. рис. 5, a), нагревом его и излучением в ИК-диапазоне. Для проверки сделанного предположения исследован температурный профиль колбы лампы в области ее прозрачности и при наличии на поверхности напыления вольфрама.

На рис. 6 приведены температурные профили лампы в случае наличия темного пятна в зоне видимости входного окна тепловизора и без него при повороте газоразрядной лампы вокруг своей оси на угол α. За точку отсчета принято местоположение катодного пятна.

При отсутствии напыления на поверхности (кривая 2) распределение температуры связано с конструктивными особенностями лампы, т. е. с расположением электродов, их массой, диаметром и т. д. Например, наблюдаемый рост температуры между точками, соответствующими расстоянию от катодного пятна 15 и 25 мм, обусловлен наличием массивного анода диаметром 10 мм. В случае кривой 1 наблюдаемая трансформация температуры в рассматриваемой области связана с наличием пятна вольфрама, обеспечивающего дополнительный подогрев оболочки. Поскольку пирометр измеряет долю ИК-излучения [10], этот факт подтверждает правомочность сделанного предположения о форме индикатрис излучения в ИК-области спектра.

Изменение температурного поля оболочки влияет на другие характеристики ламп СВД. Как следует из приведенных данных, наличие темных

58

Рис. 6. Температурное поле ксеноновой лампы СВД с вольфрамовым напылением (1) и без него (2)

налетов в зоне анода (L = 15 мм) и катода (L = -20 мм) приводит к росту температуры от 10 до 35 °С. Несмотря на достаточно незначительные изменения температуры при появлении налетов на поверхности колбы, данный эффект имеет отрицательные последствия. Во-первых, снижаются модуляционные характеристики лампы за счет роста излучающей способности поверхности кварцевой колбы. Во-вторых, увеличивается продольный градиент температуры колбы, что в условиях воздействия СВД на внутреннюю поверхность оболочки может привести к ее разрушению. Статистика анализов причин разрушения ламп СВД подтверждает правомочность этого утверждения.

Заключение. Исследовано влияние формируемого слоя вольфрама на кварцевых колбах, обусловленного распылением электродов, на характеристики излучения газоразрядных ксеноновых ламп СВД в течение их срока службы. Показано, что покрытие имеет сложный состав — равномерный слой вольфрама и отдельные пятна повышенной плотности, образующиеся при локальном испарении электрода в режиме катодного пятна. В результате перечисленных процессов происходит изменение спектральных и пространственных характеристик излучения, температурных полей газоразрядной КДЛ СВД. Полученные данные и приведенные методики исследований будут полезны разработчикам газоразрядных приборов оптического излучения для прогнозирования характеристик и срока службы приборов.

ЛИТЕРАТУРА

[1] Вартанян А.А., Ковалевский В.Е., Торгоненко В.А. Осветители с короткодуговыми ксеноновыми лампами для эндоскопии. *Светотехника*, 1986, № 6, с. 15–17.

[2] Камруков А.С., Киреев С.Г., Козлов Н.П. и др. Энергетические и излучательные характеристики импульсной короткодуговой ксеноновой лампы в режимах «насыщенной» световой яркости. ЖПС, 2017, т. 84, № 4, с. 635–642.

[3] Басов Ю.Г., Раквиашвили А.Г., Сысун В.В. Специальная светотехника. Минск, БГУ, 2008.

[4] Капцов Н.А., Гоухберг Д.А. Лампы сверхвысокого давления. УФН, 1951, т. 43, № 4, с. 620–662. DOI: 10.3367/UFNr.0043.195104f.0620

[5] Рохлин Г.Н. Разрядные источники света. М., Энергоатомиздат, 1991.

[6] Закарян А.С., Рабинович Г.И. Измерение эрозии катода в ксеноновой лампе. *Светотехника*, 1986, № 4, с. 15–16.

[7] Рабинович Г.И. Скорость испарения тория из катодов ксеноновых ламп сверхвысокого давления. *Светотехника*, 1980, № 9, с. 11–13.

[8] Амосов В.М., Карелин Б.А., Кубышкин В.В. Электродные материалы на основе тугоплавких металлов. М., Металлургия, 1976.

[9] Финкельнбург В., Меккер Г. Электрические дуги и термическая плазма. М., ИИЛ, 1961.

[10] Гавриш С.В., Логинов В.В., Пучнина С.В. и др. Исследования температурных полей в разрядных источниках ИК-излучения с сапфировой оболочкой. *ОКНТПР*, 2014, № 1, с. 49–55.

[11] Самсонов Г.В., ред. Физико-химические свойства окислов. М., Металлургия, 1978.

[12] Matskevich N.I., Semenova Z.I. Phase transformations in the system Cr–Si–W–O.
 J. Alloys Compd., 2011, vol. 509, no. 21, pp. 6146–6151.
 DOI: 10.1016/j.jallcom.2011.03.024

[13] Wang H., Chen Y., Bai Z., et al. Phase relations in the $Ta_2O_5-WO_3-SiO_2$ system. *Int. J. Refract. Metals Hard Mater.*, 2017, vol. 64, pp. 47–51. DOI: 10.1016/j.ijrmhm.2017.01.004

[14] Холодилов В.И. Распределение лучистости ксеноновых ламп с короткой дугой. *Светотехника*, 1973, № 8, с. 17–18.

[15] Рычков В.И., Соколов Л.С. Характеристики шаровых ксеноновых ламп с точки зрения формирования и расчета светового пучка. *Светотехника*, 1968, № 6, с. 11–13.

Гавриш Сергей Викторович — д-р техн. наук, заместитель директора по перспективной технике филиала АО «Стелла-К» (Российская Федерация, 124489, Москва, г. Зеленоград, Панфиловский пр-т, д. 10).

Кондратьев Алексей Николаевич — инженер-конструктор 1-й категории научнопроизводственного комплекса специальных источников излучения (НПК СИИ) филиала АО «Стелла-К» (Российская Федерация, 124489, Москва, г. Зеленоград, Панфиловский пр-т, д. 10). Характеристики излучения короткодуговых ксеноновых газоразрядных ламп...

Логинов Владимир Владимирович — начальник цеха специальных источников излучения и аппаратуры филиала АО «Стелла-К» (Российская Федерация, 124489, Москва, г. Зеленоград, Панфиловский пр-т, д. 10).

Петренко Николай Юрьевич — инженер-технолог научно-производственного комплекса специальных источников излучения (НПК СИИ) филиала АО «Стелла-К» (Российская Федерация, 124489, Москва, г. Зеленоград, Панфиловский пр-т, д. 10).

Киреев Сергей Геннадьевич — начальник научно-исследовательской лаборатории ООО «НПП «Мелитта» (Российская Федерация, 117977, Москва, ул. Миклухо-Маклая, д. 16/10).

Просьба ссылаться на эту статью следующим образом:

Гавриш С.В., Кондратьев А.Н., Логинов В.В., и др. Характеристики излучения короткодуговых ксеноновых газоразрядных ламп высокого давления. *Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение*, 2019, № 6, с. 50–63. DOI: 10.18698/0236-3933-2019-6-50-63

CHARACTERISTICS OF RADIATION OF HIGH-PRESSURE SHORT-ARC XENON GAS-DISCHARGE LAMPS

svgavr@list.ru
pernatiy87@mail.ru
stronzo@bk.ru
mikolatrue777@gmail.com
kireevsg.melitta@gmail.com

¹ Branch of JSC Stella-K, Zelenograd, Moscow, Russian Federation
 ² Scientific and Production Enterprise "Melitta" Ltd, Moscow, Russian Federation

Abstract	Keywords
The paper is devoted to the study of changes in characteristics of ultra-high pressure short-arc xenon lamps when a tungsten layer is sprayed onto the quartz shell, as a result of heating and local electrode erosion. The paper analyzes the mechanisms of phenomena occurring in the super-high pressure xenon discharge and the cathode spot, which affect the sputtering of the electrode material. The main negative effects of tungsten deposits appearing on the lamp shell inner surface are considered: a decrease in the optical transparency and mechanical strength of quartz glass, an increase of the bulb temperature, a change in spectral characteristics and spatial distribution of radiation of a gas-discharge lamp. The original method	Gas-discharge lamp, sputtering, spectrum, spatial distribution of radiation, temperature field

developed for studying the parameters of radiation of a	
gas-discharge lamp and based on the superposition of	
the optical axis of the photometer with the axis of the	
lamp passing through the cathode spot and the	
considered shell segment, transparent or sprayed,	
allowed us to compare radiation characteristics of the	
lamp without changing the plasma parameters. The	
thermodynamic analysis carried out within the	
research confirmed the absence of chemical interact-	
ion of tungsten layer with quartz glass. Spectral	
distribution of xenon discharge radiation in the visible	
and IR ranges is different for a transparent bulb and	
the bulb with a tungsten spot, which is due to the size	
of tungsten layer particles on the lamp bulb. A study of	
spatial distribution of radiation from a gas-discharge	
lamp showed a decrease in the intensity of radiation in	
a solid angle bounded by a tungsten spot. At the same	
time, in this region, there was observed an increase in	
the temperature of the quartz shell, leading to the	
appearance of a longitudinal gradient of the tempe-	Received 04.04.2019
rature field of the gas-discharge lamp	© Author(s), 2019

REFERENCES

[1] Vartanyan A.A., Kovalevskiy V.E., Torgonenko V.A. Lighters with short arc lamps for. *Svetotekhnika* [Lights & Engeneerings], 1986, no. 6, pp. 15–17 (in Russ.).

[2] Kamrukov A.S., Kireev S.G., Kozlov N.P., et al. Energy and emission characteristics of a short-arc xenon flash lamp under "saturated" optical brightness conditions. *J. Appl. Spectros.*, 2017, vol. 84, no. 4, pp. 657–663.

DOI: 10.1007/s10812-017-0525-0

[3] Basov Yu.G., Rakviashvili A.G., Sysun V.V. Spetsial'naya svetotekhnika [Special lightning engineering]. Minsk, BGU Publ., 2008.

[4] Kaptsov N.A., Goukhberg D.A. Super high pressure lamps. *UFN*, 1951, vol. 43, no. 4, pp. 620–662 (in Russ.). DOI: 10.3367/UFNr.0043.195104f.0620

[5] Rokhlin G.N. Razryadnye istochniki sveta [Discharge light sources]. Moscow, Energoatomizdat Publ., 1991.

[6] Zakaryan A.S., Rabinovich G.I. Measurement of cathode erosion in xenon lamp. *Svetotekhnika* [Lights & Engeneerings], 1986, no. 4, pp. 15–16 (in Russ.).

[7] Rabinovich G.I. Thorium evaporation rate from cathodes of xenon ultrahigh pressure lamps. *Svetotekhnika* [Lights & Engeneerings], 1980, no. 9, pp. 11–13 (in Russ.).

[8] Amosov V.M., Karelin B.A., Kubyshkin V.V. Elektrodnye materialy na osnove tugoplavkikh metallov [Electrode materials based on refractory metals]. Moscow, Metallurgiya Publ., 1976.

Характеристики излучения короткодуговых ксеноновых газоразрядных ламп...

[9] Finkel'nburg V., Mekker G. Elektricheskie dugi i termicheskaya plazma [Electric arcs and thermal plasma]. Moscow, IIL Publ., 1961.

[10] Gavrish S.V., Loginov V.V., Puchnina S.V., et al. Study of temperature fields in discharge sources of IR radiation with sapphire envelope. *OKNTPR*, 2014, no. 1, pp. 49–55 (in Russ.).

[11] Samsonov G.V., ed. Fiziko-khimicheskie svoystva okislov [Physical and chemical properties of oxides]. Moscow, Metallurgiya Publ., 1978.

[12] Matskevich N.I., Semenova Z.I. Phase transformations in the system Cr–Si–W–O. *J. Alloys Compd.*, 2011, vol. 509, no. 21, pp. 6146–6151.

DOI: 10.1016/j.jallcom.2011.03.024

[13] Wang H., Chen Y., Bai Z., et al. Phase relations in the Ta₂O₅–WO₃–SiO₂ system. *Int. J. Refract. Metals Hard Mater.*, 2017, vol. 64, pp. 47–51.

DOI: 10.1016/j.ijrmhm.2017.01.004

[14] Kholodilov V.I. Radiation distribution of short arc xenon lamps. *Svetotekhnika* [Lights & Engeneerings], 1973, no. 8, pp. 17–18 (in Russ.).

[15] Rychkov V.I., Sokolov L.S. Characteristics of ball xenon lamps in terms of the formation and calculation of the light beam. *Svetotekhnika* [Lights & Engeneerings], 1968, no. 6, pp. 11–13 (in Russ.).

Gavrish S.V. — Dr. Sc. (Eng.), Deputy Director for Advanced Technology, Branch of JSC Stella-K (Panfilovskiy prospekt 10, Zelenograd, Moscow, 124489 Russian Federation).

Kondratyev A.N. — Design Engineer of the 1st Category, Research and Production Complex of Special Radiation Sources, Branch of JSC Stella-K (Panfilovskiy prospekt 10, Zelenograd, Moscow, 124489 Russian Federation).

Loginov V.V. — Head of the Department of Special Sources of Radiation and Apparatus, Branch of JSC Stella-K (Panfilovskiy prospekt 10, Zelenograd, Moscow, 124489 Russian Federation).

Petrenko N.Yu. — Industrial Engineer, Research and Production Complex of Special Radiation Sources, Branch of JSC Stella-K (Panfilovskiy prospekt 10, Zelenograd, Moscow, 124489 Russian Federation).

Kireev S.G. — Head of Research Laboratory, Scientific and Production Enterprise "Melitta" Ltd (Mikluho-Maklaya ul. 16/10, Moscow, 117977 Russian Federation).

Please cite this article in English as:

Gavrish S.V., Kondratyev A.N., Loginov V.V., et al. Characteristics of radiation of highpressure short-arc xenon gas-discharge lamps. *Herald of the Bauman Moscow State Technical University, Series Instrument Engineering*, 2019, no. 6, pp. 50–63 (in Russ.). DOI: 10.18698/0236-3933-2019-6-50-63