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Abstract Keywords 
Based on the analysis of accidents of 500 kV overhead 
lines of the main electric electrical grid of a wide re-
gion over a long-time-interval, the failure frequency 
(failure flux parameter) was determined under the 
influence of natural and socio-economic factors. It is 
proposed to consider the indicated failure rate as the 
output signal of a discrete positive dynamic system 
with many difficult formalizable inputs. To identify 
the mathematical model of a dynamic system, it is 
proposed to use the original method, the identifiabil-
ity criterion of which is based on the compatibility 
condition of the linear matrix equation, and the nu-
merical identification algorithm is based on the solu-
tion formula using zero-divisors and generalized 
inverse matrices. The method does not require a 
priori information about the parameters of the math-
ematical model of the electric electrical grid, does not 
involve solving the forecasting problem, and does not 
apply statistical calculations 
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Introduction. The causes of major accidents in electric electrical grids with 
massive damage to overhead lines (OL) are mainly caused by extreme climatic 
conditions (increased glaze-ice and rime deposition, hurricanes, natural fires, 
etc.), human activities (unauthorized exposure to OL elements and their poor-
quality operation — runover on the supports, wire touching by hoisting devices, 
untimely detection of defects, etc.). Thus, in the general case, the accident rate  
of OL depends on the impact of natural and social (socio-economic) factors. 
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The main reasons for the stable  failure of OL of 500 kV with a total length  
of about 8.5 thousand km of the European part (Central Federal District)  
of Russia for the period 2011–2018 are given in Table [1]. According to the 
presented data, social (paras. 1, 4) and natural impacts (paras. 2–5) almost 
equally affect the OL accident. 

Organizational failure reasons in the period 2011–2018 

Failure reason 
The number of failures 

pcs. % 

1. Failure to meet deadlines, 
failure to meet the required 
scope of maintenance or repair 
of equipment and devices 34 12.8 

 1.1. Untimely detection and 
elimination of defects 
(breakage or untwining  
of wires and cables, 
destruction of the garland) 17 6.4 
 1.2. Other violations 17 6.4 

2. Bird impacts 5 1.9 
3. Excess of impact parameters  
of natural phenomena 
concerning project conditions 

8 3.0 

4. Effects of outsiders and 
organizations not involved  
in the technological process 91 34.2 
5. Impact of recurring natural 
phenomena 121 45.5 

 5.1. Glaze-ice and rime 
deposition 17 6.4 
 5.2. Atmospheric 
overvoltages (thunderstorm) 57 21.4 
 5.3. Natural fires 17 6.4 
 5.4. Other effects of adverse 
natural phenomena (tree fall) 30 11.3 

6. Undisclosed reasons 7 2.6 
Total 266 100.0 

__________________
 Failures that cannot be eliminated by the automatic reactivation action. 
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Accident cycles in electrical grids are considered in [2] by the example  
of statistical data on unrecoverable failures of OL of 500 kV also of the European 
part (Central Federal District) of Russia for the period 1974–2001 (specific 
damage, 1/(year 100 km), more precisely — average flux parameter or failure 
frequency ). The authors of the present work have studied the archives of all OL 
of 500 kV with technological disturbances in the region under consideration for 
2002–2018. The failure frequency of non-recoverable OL of 500 kV for the period 
1974–2018 is shown on Fig. 1, which is an amplitude-temporal representation  
of the parameter [1], where failure frequency values have an oscillatory character, 
varying in a sufficiently large range: from 0.11 1/(year∙100 km) in 1980 and 2018 
to 0.86 1/(year∙100 km) in 1998. 

Fig. 1. Values of failure frequency of OL of 500 kV for the period 1974–2018 
 
Causal relationships and their resulting impact on the behavior of failure 

frequency are determined by the multifactorial and difficult to formalize a 
combination of environmental influences and socio-economic factors [1]. 
Nevertheless, regardless of this parameter is not a set of fixed values, depending, 
for example, on the material of the supports or the nominal voltage of the line, 
but a dynamic process with a change in the characteristic periods generated by 
some dynamic systems. 

The mathematical model of dynamic systems are conventionally divided into 
two disjoint classes [3]: 1) autonomous; 2) input-output. In the first class, the 
system output signals are generated by internal state transitions under the action 
of nonzero initial conditions. Moreover, all unformalized external influences  
of such a system are transformed into equivalent initial conditions [4]. In the 
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second class, the system output signals are a homomorphic (not one-to-one) 
transformation of the corresponding input signals. 

Let us formulate the problem: which of dynamic systems reproduces the 
sequence of output signals with the smallest possible deviations from the 
observed series in the form of failure frequency (see Fig. 1). The identifiability 
model should: 

– refers to the class of discrete dynamic system, since changes in flux 
parameter occur discretely with a step of  “integration” — year; 

– be positive (non-negative), that is, generate only positive values of the out-
put signal, since the flux parameter of failure is at least a non-negative value [5, 6]; 

– be represented in the state space, that is, described by a combination  
of physical or abstract variables that characterize the behavior of the system in the 
future, provided that the state is known at the current moment [3, 4]; 

– possess the property of non-stationarity, since its parameters change in 
time, from step to step [7]; 

– be considered as an autonomous system, since there is no additional 
information that can be mistaken for input signals. 

The method of identification of dynamic systems. Let the mathematical 
model of a linear discrete dynamic system in the state space have the form 

 1 ,k k kx x vA B  (1) 

where A, B are constant matrices of intrinsic (free) dynamics and inputs; x is a 
state vector of a model of a power system of dimension ;xn  v is a vector of input 
influences of dimension ;vn  0, 1, ...,k l  is discrete time. System (1) is not 
autonomous since it contains input influences. 

According to the results of measurements of the state vector and the vector 
of input influences, it is required to identify (restore) the mathematical model (1). 

Let us consider the matrix equation formed based on (1), 

 1 .k k kX X VA B  (2) 

Here 

 ... ,k k k hx xX  (3) 

 ...k k k hv vV  (4) 

are the matrices compiled based on available data (measurements); h is the 
number of observation steps.  

If discrete equations (3) and (4) one used for solving the problem of 
parametric identification, i.e., restoration of matrix elements A and B, then it is 
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matrices A and B that act as the unknown. In this case, the equation (3) can be 
rewritten in the equivalent block-matrix form 

 1.k
k

k
XA

X
V

B  (5) 

To solve block-matrix equations (5) we use the results of [8–10], where it is 
shown that the linear matrix equation of the type 

 YC D  (6) 

with known matrices C, D is solvable concerning matrix Y than and only then 
when the compatibility (solvability) condition is fulfilled 

 0.RDC  (7) 

All kinds of solutions of the matrix equation are determined by the formula 

 .
L

R R
L

C
Y DC DC C

C
 (8) 

Here  is an arbitrary matrix; ,LC  RC  are left and right zero divisors of 
maximum rank (matrices for which conditions 0,LC C  0RCC  are satisfied); 

,LC  RC  are left and right divisors of unity (matrices satisfying the equality 
,L RC CC E  E is the identity matrix); R LC C C  is a semi-inverse matrix 

satisfying the canonical decomposition 

 
1

10
.

0 0
L

R R
L

C E
C C C

C
 (9) 

A special case of the semi-inverse matrix is the pseudo-inverse matrix by 
Moore — Penrose inverse C [10]. 

In the general case, the canonical decomposition (9) is not unique and 
formalizes direct and inverse equivalent matrix transformations [10, 11]. The use 
of canonical decomposition allows one to obtain in analytic form the set of all 
solutions of a matrix equation (6), with a minimum rank. 

Let us compare the equation (6) with equation (5), used to solve the problem 
of parametric identification. Then, in accordance with (7) the conditions for 
solvability (compatibility) of the problems of model identification (1), i.e., the 
conditions for the presence of at least one solution, are the expressions 
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 1 0.k
k

k R

X
X

V
  (10) 

Under solvability conditions  (10) all identified models according to (8), can 
be written in the form of sets 

 1 .k k
k

k kR L

X
A

X
X

V V
B  (11) 

Conditions of identifiability [11], i.e., conditions for obtaining a single 
solution, require equality to zero of the left zero divisor in the formula (11): 

 0,
L

k

k

X
V

 (12) 

then the identifiability mathematical model becomes a single form 

 1 .k
k

k R

X
X

V
A B  (13) 

Here 

 R

k

k

X
V

 
is the pseudo-inverse matrix according to Moore — Penrose inverse. The use  
of the pseudoinverse matrix in (13) provides the problem of identification  
of dignity, which is inherent to the least-squares method [8]. 

In fact, the condition (12) also determines the dimension of the state space 
xn  of the dynamic system (1) [11–18]. 

Often there is no possibility of measuring input influences in the power 
system, then instead of (1) as a mathematical model of the normal (pre-
accidental) mode of the power system, autonomous dynamic systems can be used 

 1 0 0, .k k kx x x xA  (14) 

In this case, instead of the ratio (2) the following should be written 

 1 ;k kXAX  (15) 

 1 0;R
kkX X  (16) 

 1 .kkA X X  (17) 

Here R
kX  is the matrix — the left zero divisor [13–15]. 



N.E. Zubov, I.M. Galiaskarov, V.N.  Ryabchenko 

106  ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2020. № 3 

Example. Let’s demonstrate the workability of the proposed method of 
identification on the example of an autonomous discrete dynamic system of the 
second order 

 
1 1 11 2 01
2 2 22 1 01

0
, ,

1
k k

k k

x a a x x
a ax x x

    2 2
1 2 1.a a  (18) 

The system (18) is asymptotically stable since the roots of the characteristic 
polynomial of the matrix A are complex conjugate numbers 2

1 2, 1,a ja j  

lying inside the unit circle on the complex plane under the condition 2 2
1 2 1a a  

in (18). 
Let us consider the solution of the identification problem in steps, thus 

formulating an identification algorithm. 
Step 1. Using a 2 × 3-dimensional matrix: 

 2 1 ,kk k kx x xX  (19) 

since the dynamic system (18) has the second order. For example, for k = 2 and  
k = 3 following the (18) we get 

 
2 1 2

0 1 2 2 21 1 2
2

0 2
;

1k
a a a

a a a
x x xX X  (20) 

 
3 22 1 2 22 1

1 2 3 21 3 2 3 21 11 2 1 2

2 3
.

3
k

a a a a a a
a a a a a a

x x xX X  (21) 

Step 2. Calculating the orthogonal right zero divisor of the matrix (20): 

 

2 2
1 2

2

2 1 2
2 2 22 2 21 1 2 1 2 1

2
0 2 1

.
1 4 1

R

R
k

R

a a
a

a a a
a a a a a a

X X  (22) 

Step 3. Checking with (21) and (22) the conditions of identifiability (16): 

 

2 2
1 23 2

2 1 2 22 1
22 2 3 2

1 11 2 1 2

1 2 23
2 2 2
1 2 1

2 3
3 1 0

.
04 1

R R
kk

a a
a a a a a a

a
a a a a a a

a a a
X X X X  
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Therefore, we can conclude that it is possible to successfully solve the 
identification problem. 

Step 4. Solving the identification problem using (17) in accordance with (20) 
and (21): 

 
3 2 2 1 22 1 2 2 1 22 1

2 2 22 2 3 2 2 111 1 1 21 2 1 2
3

0 22 3
.

13

a a aa a a a a a a a
a aa a aa a a a a a

A X X  

This is exactly the same as the right side of the equations of the dynamic 
system (18). 

Identification of the mathematical model of failure frequency. 
Identification of the flux parameter of the failure change model for 2002–2018 in 
the class of positive, discrete, non-stationary, autonomous dynamic systems in 
the state space is made based on the presented method, which is used for each 
step due to the unsteadiness of the state space. We restrict ourselves to the set of 
data analyzed since 2002 (see Fig. 1). Otherwise, as shown in [1], the 
identification results will be significantly affected by the so-called data “tails” 
from the previous “historical” periods. 

As a result of applying (15)–(17) under the above conditions for identifying a 
non-stationary dynamic system, we obtain discrete equations: 

 1 0 0, ;k k k kx x x xA   

 1 ;k kkA X X   

 1 0 0k kx ,  

where ( )t  is an output signal of the dynamic system in the form of failure 
frequency;  

 

2002 2003 2016

0 2003 1 2004 14 2017

2004 2005 2018

, , ...,x x x

 

are values of the state vector of the dynamic system at the corresponding step  
of  “integration”; 1, ...,14k  is “integration” interval; 

 1 1

0 1 0
0 0 1 , eig 0.33264 0.6439; 0.8933 ,

0.4655 0.0621 0.2404
jA A   
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 2 2

0 1 0
0 0 1 , eig 0.3249 0.6448; 0.8946 , ...,

0.4633 0.0600 0.2448
jA A   

 13 13

0 1 0
0 0 1 , eig 0, 3788 0.5622; 0.9104 ,

0.4184 0.2301 0.1528
jA A   

 14 14

0 1 0
0 0 1 , eig 0.3773 0.5579; 0.9093 ,

0.4125 0.2326 0.1548
jA A   

are matrices of their own (free) dynamics by the steps of “integration” and 
corresponding sets of their own values (Fig. 2). 

Fig. 2. Eigenvalues of the mathematical model of failure frequency: 
1 is complex conjugate pairs of poles; 2 is tangent line to the border of stability; 3 is real poles 

 
According to the above diagram, the identified model is an asymptotically 

stable (Shurov) system, since to ensure the asymptotic stability of the discrete 
dynamic system, it is necessary and sufficient to arrange its poles on the complex 
plane inside the unit circle centered at the origin [4]. Let us note that the robust-
ness of such a dynamic system studied in [1] showed that the stability margin is 
very small and amounts to approximately 10 % of the nominal values of the  
elements of matrix A. Therefore, the stability of the model is significantly affect-
ed by relatively small perturbations of the system parameters. The correlation  



Identification of the Mathematical Model of Failure Frequency…

ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2020. № 3 109 

of this theoretical assumption with the practice of operating the main electrical 
grids showed the following [1]: about 40 % of OL of 500 kV were built more 
than 50 years ago, less than 20 % of OL of 500 kV less than 30 years ago. Over 
the past 30 years, the average duration of a scheduled repair of OLs in the main 
electrical grids of power systems has grown from 12–17 to 95–149 hours, that is,  
almost 10 times, and the major part of intentional shutdowns of OL is associated 
with repairs or maintenance of lines, but not its reconstruction or other external 
causes. In other words, maintaining the workability of morally and physically 
worn out electrical grid elements is provided not by reconstruction, but by 
lengthy repairs. 

Conclusion. The existence of significant fluctuations in the failure frequency 
of OL of 500 kV over the past decades under the influence of natural and socio-
economic factors has suggested that this parameter can be described as an output 
signal of a dynamic system in the class of positive discrete non-stationary 
autonomous dynamic systems with implementation in state space. 

To identify the mathematical model of the dynamic system, it is proposed to 
use the original method, the identifiability criterion of which is based on the 
fulfillment of the compatibility condition of the linear matrix equation (7), and 
the numerical identification algorithm itself is based on the solution formula (8) 
using zero divisor and generalized matrix inverse. The use of semi-inverse matrix 
as a pseudo-inverse matrix according to Moore — Penrose inverse provides the 
considered task of identification of advantages inherent in the method of least 
squares in terms of data inaccuracy and calculation errors. 

Translated by K. Zykova 
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