УДК 536

ОЦЕНКА ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ЭЛЕКТРОИЗОЛИРУЮЩЕГО ТЕПЛООТВОДА СИЛОВЫХ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

В.Г. Костиков¹ Р.В. Костиков² Я.С. Гаврилин² В.А. Шахнов¹

yar2041@yandex.ru shakhnov@bmstu.ru

¹ МГТУ им. Н.Э. Баумана, Москва, Российская Федерация ² ПАО «НПО «Алмаз», Москва, Российская Федерация

Аннотация	Ключевые слова
Для охлаждения нескольких близкорасположен-	Силовые полупроводниковые
ных силовых полупроводниковых приборов обыч-	приборы, общий теплоотвод,
но используется общая теплоотводящая пластина,	тепловое сопротивление,
эффективность отвода теплоты которой определя-	уравнение теплопроводности
ется ее тепловым сопротивлением. Рассмотрена	
задача определения теплового сопротивления пла-	
стины из электроизолирующего материала при	
различном расположении на ней полупроводнико-	
вых приборов. Результаты решения полученных	
уравнений позволяют выбрать конструктивные	Поступила 13.11.2019
параметры теплоотвода высоковольтных полупро-	Принята 24.08.2020
водниковых приборов	© Автор(ы), 2021

Введение. Силовые полупроводниковые приборы (транзисторы, тиристоры, диоды) применяют в устройствах радиопередатчиков, преобразователей напряжения и тока, систем управления лучом ФАР и др. [1–3]. Оптимизация массы и объема указанных устройств проводится, как правило, с учетом заданного температурного режима силовых приборов, которые на практике обычно размещают на общей теплопроводящей пластине из электропроводного материала с использованием электроизолирующих прокладок. Для высоковольтных устройств приборы выбирают с высоким допустимым напряжением и устанавливают на пластину из теплопроводящего изолирующего материала, например алюмонитридной керамики [4]. В обоих случаях необходимо рассчитать температурное поле пластины с учетом размещения на ней силовых приборов для оценки их взаимного теплового влияния. При решении подобных задач используют экспериментальный метод определения тепловых проводимостей [5], что не всегда приемлем.

Далее приведены результаты анализа теплового режима пластины, определяемого ее тепловым сопротивлением, в зависимости от расположения на ней двух силовых полупроводниковых приборов. В случае наличия большего числа силовых приборов расчет будет основан на методике, приведенной в работе.

Модель. В качестве иллюстрации на рис. 1 показан корпус 1 изделия из теплопроводящего металла (алюминиевого сплава), в левой части которого находится пластина 2 из теплопроводящего электроизолирующего материала, прижимаемая к корпусу четырьмя электроизолирующими шайбами. В правой части корпуса показано посадочное место 3 для пластины, размеры которого несколько меньше размеров фронтальной стороны пластины. Фаски на боковых сторонах пластины (не показаны на рис. 1) выполнены в процессе доработки конструкции для увеличения расстояния между приборами на пластине и металлом корпуса и повышения пробивного напряжения до 27 кВ.

Рис. 1. Закрепленная на корпусе 1 пластина 2 и посадочное место 3

Геометрическая модель решения задачи показана на рис. 2. Пластина представляет собой параллелепипед, фронтальная поверхность которого имеет размеры $2a \times 2b$. Начало координат помещено в точку *O* фронтальной поверхности. Тепловой поток входит в пластину от двух силовых приборов, размещенных на площадках размером $\delta \times \delta$ фронтальной поверхности, и выходит через площадку размером $2c \times 2d$ тыльной поверхности.

Тепловое сопротивление R_T [6] пластины при вхождении в нее теплового потока через площадки в виде прямоугольников со сторонами размером δ определяется выражением:

$$R_T = \frac{t_1 - t_2}{\varPi} - R_p,\tag{1}$$

Рис. 2. Геометрическая модель и схема расположения силовых приборов на фронтальной поверхности пластины

где t₁ — температура нагреваемой поверхности пластины; t_2 — температура охлаждаемой поверхности пластины; П — тепловой поток, входящий в пластину; R_p — тепловое сопротивление между фронтальной и тыльной поверхностями пластины при равномерном распределении входящего теплового потока по ее фронтальной поверхности.

Необходимо определить распределение температуры в теле пластины при прохождении теплового потока от двух площадок размером $\delta \times \delta$ до площадки размером $2c \times 2d$. Указанное распределение представим уравнением тепло-

проводности для трехмерного случая [7]:

$$\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial z^2} + \frac{\partial^2 t}{\partial y^2} = 0;$$
(2)

Уравнение (2) решаем при граничных условиях

$$\left. \frac{\partial t}{\partial x} \right|_{x=\pm a} = 0; \tag{3}$$

$$\left. \frac{\partial t}{\partial z} \right|_{z=\pm b} = 0; \tag{4}$$

$$\frac{\partial t}{\partial y}\Big|_{y=0} = \begin{cases} \frac{r_T \Pi}{2\delta^2}, & g \le |x| \le (g+\delta), \\ \frac{1}{2\delta^2}, & f \le |z| \le (f+\delta) \\ 0 & \text{при всех других значениях x и } z \end{cases};$$
(5)

при всех других значениях *x* и *z*

$$\frac{\partial t}{\partial y}\Big|_{y=L} = \begin{cases} \frac{r_T \Pi}{4cd} & \text{при } |x| \le c, |z| \le d \\ 0 & \text{при всех других значениях } x \text{ и } z \end{cases}, \tag{6}$$

где $r_T = 1/\lambda$ — коэффициент теплового сопротивления; λ — коэффициент теплопроводности.

Решение системы уравнений (2)–(6) можно получить методом разделения переменных [8], представив функцию трех переменных тремя функциями V, W и U одной переменной:

$$t(x, z, y) = V(x)W(z)U(y) =$$

$$= \frac{1}{V(x)} \frac{d^2 V(x)}{dx^2} + \frac{1}{W(z)} \frac{d^2 W(z)}{dz^2} + \frac{1}{U(y)} \frac{d^2 U(y)}{dy^2}.$$
(7)

Введем обозначение

$$\frac{1}{V(x)}\frac{d^2V(x)}{dx^2} = -\varepsilon^2.$$
(8)

Решение уравнения (8):

$$V(x) = M_1 \sin \varepsilon x + N_1 \cos \varepsilon x.$$
(9)

При выполнении условия (5) имеем $M_1 = 0$ и уравнение (9) принимает вид

$$V(x) = N_1 \cos \varepsilon x. \tag{10}$$

При использовании граничного условия (3) получаем уравнение $\varepsilon_1 = \pi i / a$, которое подставим в (10):

$$V(x) = \sum_{i=0}^{\infty} N_1 \cos \frac{\pi i}{a} x.$$
 (11)

При использовании граничного условия (4) имеем $\varepsilon_2 = \pi j/b$ и для W_z получим

$$W(z) = \sum_{j=0}^{\infty} N_2 \cos \frac{\pi j}{b} z.$$
 (12)

Уравнение (7) с учетом (8) и (12) преобразуем к виду

$$\frac{1}{U(y)}\frac{d^2U(y)}{dy^2} - (\sigma^2 + \epsilon^2) = 0.$$
 (13)

Уравнение (13) имеет решение

$$U(y) = P_1 \operatorname{sh} \sqrt{\sigma^2 + \varepsilon^2} y + P_2 \operatorname{ch} \sqrt{\sigma^2 + \varepsilon^2} y.$$
(14)

После подстановки (11), (12) и (14) в (7) будем иметь

$$t = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \left[F \sin \pi \sqrt{\frac{i^2}{a^2} + \frac{j^2}{b^2}} y + G \operatorname{ch} \pi \sqrt{\frac{i^2}{a^2} + \frac{j^2}{b^2}} y \right] \cos \frac{\pi i}{a} x \cos \frac{\pi j}{b} z.$$
(15)

Граничные условия (5) и (6) разложим в ряд Фурье [9] в интервалах -a...a и -b...b и определим постоянные *F* и *G*:

$$F = \frac{16r_T \Pi}{\pi^5 ij\delta} \frac{\sin\frac{\pi i}{2a}\delta\sin\frac{\pi j}{2b}\delta\cos\frac{\pi i}{2a}(2g+\delta)\cos\frac{\pi j}{2b}(2f+\delta)}{\sqrt{\frac{i^2}{a^2} + \frac{j^2}{b^2}}};$$

$$G = \frac{4r_T \Pi}{\pi^5 ijcd} \frac{\sin\frac{\pi i}{a}c\sin\frac{\pi j}{b}d}{\sqrt{\frac{i^2}{a^2} + \frac{j^2}{b^2}} \operatorname{sh} \pi \sqrt{\frac{i^2}{a^2} + \frac{j^2}{b^2}}L} - F \operatorname{cth} \pi \sqrt{\frac{i^2}{a^2} + \frac{j^2}{b^2}}L.$$

Тепловое сопротивление (1) представим в виде

$$R_T = \frac{t_u |_{y=0} - t_u |_{y=L}}{\Pi} - R_p.$$
 (16)

Здесь t_u — интегральное значение температуры, которая при y = 0 и y = L зависит от x и z следующим образом:

$$t_{u} \bigg|_{y=0} = \frac{1}{2\delta^{2}} \left[\int_{-(a+\delta)}^{-a} \int_{-(f+\delta)}^{-f} t \bigg|_{y=0} dx dz + \int_{a}^{a+\delta} \int_{f}^{f+\delta} t \bigg|_{y=0} dx dz \right]; \quad (17)$$

$$t_{u}\Big|_{y=L} = \frac{1}{4cd} \int_{-c}^{c} \int_{-d}^{d} t\Big|_{y=L} dx dz.$$
(18)

Подставив (17) и (18) в выражение для теплового сопротивления, получим:

$$R_T = \frac{4r_T ab}{\pi^5} \sum_i \sum_j \left\{ \frac{\operatorname{cth}(\pi \varepsilon L)}{i^2 j^2 \varepsilon} \left[\frac{\mu^2 q^2}{c^2 d^2} + \frac{32t^2 \eta^2 u^2 \theta^2}{\delta^4} \right] - \frac{12\mu q t \eta u \theta}{i^2 j^2 c d \delta^2 \operatorname{sh}(\pi \varepsilon L)} \right\}, \quad (19)$$

где

$$\varepsilon = \sqrt{\frac{i^2}{a^2} + \frac{j^2}{b^2}}; \quad \mu = \sin\frac{\pi i c}{a}; \quad \theta = \cos\left[\frac{\pi j}{2b}(2f+\delta)\right]; \quad t = \sin\frac{\pi i \delta}{2a};$$
$$q = \sin\frac{\pi j d}{b}; \quad \eta = \sin\frac{\pi j \delta}{2b}; \quad u = \cos\left[\frac{\pi i}{2a}(2g+\delta)\right].$$

В формуле (19) выражения под знаком суммирования вычисляем для всех значений $i \neq 0$ и $j \neq 0$.

Результаты. Применимость полученных соотношений в инженерной практике проверена на реальной конструкции источника электропитания радиопередатчика. Исследованы пластины из корундовой керамики марок ВК94-1, ВК100-1 и ВК100-2 [10], рассчитанные на жесткие условия эксплуатации [11]. Корундовая керамика является изотропным материалом, поэтому в литературе, в частности [12], приводят коэффициент теплопроводности, независимый от направления распространения теплоты. Размеры пластины приведены на рис. 3. На поверхность А нанесен слой из проводящей пасты ПП8 [13] толщиной 30 мкм.

Рис. 3. Размеры пластины из корундовой керамики

Сочетаемые по расширению с корундовой керамикой материалы (29НК, 38НКД, 47НД, молибден, титан) имеют сравнительно низкую теплопроводность [14] по сравнению алюминиевым сплавом марки С АМгЗ [15], из которого изготовлен корпус изделия. Крепление пластин к корпусу из алюминиевого сплава пайкой обеспечивает хороший теплоотвод, но в процессе эксплуатации возможно появление трещин в пластинах. Это и проявилось при испытаниях макетного образца в диапа-

Рис. 4. Изображение трещины в пластине при креплении ее к корпусу пайкой

зоне значений рабочей температуры –50...85 °C, характерной для отсека радиопередающего устройства (рис. 4). Поэтому тепловой контакт пластины и корпуса обеспечен прижимами с использованием изолирующих шайб (см. рис. 1) или уголков и болтов из полиамида марки ПА610-1-105 [16]. В экспериментах тепловой поток, равный 5 Вт, входил в каждую из двух площадок размерами 10×10 мм. Исследованы четыре пластины размерами 50×50 , 60×60 , 80×80 и 100×100 мм. Влияние взаимного расположения площадок на тепловое сопротивление пластин, полученное расчетом, показано на рис. 5, при этом расстояния от площадок до осей абсцисс и ординат приняты одинаковыми, т. е. g = f. Тепловое сопротивление имеет наибольшие значения при расположении тепловыделяющих приборов в углах пластины или рядом с ее серединой. Наименьшие значения тепловое сопротивление имеет при размещении приборов в центрах квадрантов, в которых приборы находятся.

Заключение. С использованием зависимости (19) можно оценить влияние на тепловое сопротивление пластины следующих параметров: размеров пластины $2a \times 2b$ с учетом ее теплофизической характеристики; размеров $\delta \times \delta$ площадок, через которые тепловой поток передается в пластину; положения площадок относительно начала координат на пластине; размеров $2c \times 2d$ тыльной части пластины, через которую выходит тепловой поток.

ЛИТЕРАТУРА

[1] Глушицкий И.В., Зайченко И.И. Конструктивные особенности устройств охлаждения для бортовых АФАР. *Антенны*, 2008, № 9 (136), с. 70–74.

[2] Дьяконов В.П., ред. Схемотехника устройств на мощных полевых транзисторах. М., Радио и связь, 1994.

[3] Березин О.К., Костиков В.Г., Шахнов В.А. Источники электропитания радиоэлектронной аппаратуры. М., Три Л, 2000.

[4] Калистратов Н.А. Улучшение эксплуатационных характеристик высоковольтных источников питания для мощных ламп с бегущей волной. Дис. ... канд. техн. наук. Саратов, СГТУ им. Ю.А. Гагарина, 2017.

[5] Старенченко А.В., Ушкар М.Н. Проектирование систем охлаждения бортовых РЛС малоразмерных ЛА. *Наукоемкие технологии*, 2016, т. 17, № 10, с. 3–6. Оценка теплового сопротивления электроизолирующего теплоотвода...

[6] Роткоп Л.Л., Спокойный Ю.Е. Обеспечение тепловых режимов при конструировании радиоэлектронной аппаратуры. М., Сов. радио, 1976.

[7] Карлслоу Г., Егер Д. Теплопроводность твердых тел. М., Наука, 1964.

[8] Миллер У. мл. Симметрия и разделение переменных. М., Мир, 1981.

[9] Привалов И.И. Ряды Фурье. М., Л., ГНТИ, 1931.

[10] ТУ 11-78 аА0.027.002ТУ. Керамика вакуумплотная. Технические условия. М., 1978.

[11] Кайнарский И.С., Дегтярева Э.В., Орлова И.Г. Корундовые огнеупоры и керамика. М., Металлургия, 1981.

[12] ОСТ4 Г0.029.207-79 Материалы неорганические (стекло, керамика, ситаллы). Руководство по выбору. М., 1979.

[13] ЕТ0.035.367ТУ. Пасты проводниковые на основе драгоценных металлов. М., 2004.

[14] Охотин А.С., Боровикова Р.П., Нечаева Т.В. и др. Теплопроводность твердых тел. М., Энергоатомиздат, 1984.

[15] ГОСТ 4784–97. Алюминий и сплавы алюминиевые деформируемые. Марки. М., Стандартинформ, 2009.

[16] ТУ 6-06-134-90. Композиции на основе полиамидов 610 и 66/6 (80:20). Технические условия. М., 1990.

Костиков Владимир Григорьевич — д-р техн. наук, профессор кафедры «Проектирование и технология производства электронной аппаратуры» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Костиков Руслан Владимирович — ведущий инженер ПАО «НПО «Алмаз» (Российская Федерация, 125190, Ленинградский пр-т, д. 80, корп. 16).

Гаврилин Ярослав Сергеевич — инженер ПАО «НПО «Алмаз» (Российская Федерация, 125190, Ленинградский пр-т, д. 80, корп. 16).

Шахнов Вадим Анатольевич — чл.-корр. РАН, д-р техн. наук, заведующий кафедрой «Проектирование и технология производства электронной аппаратуры» МГТУ им. Н.Э. Баумана (Российская Федерация, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1).

Просьба ссылаться на эту статью следующим образом:

Костиков В.Г., Костиков Р.В., Гаврилин Я.С. и др. Оценка теплового сопротивления электроизолирующего теплоотвода силовых полупроводниковых приборов. Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение, 2021, № 1 (134), с. 4–13. DOI: https://doi.org/10.18698/0236-3933-2021-1-4-13

ESTIMATING THERMAL RESISTANCE OF AN INSULATED HEAT SINK FOR SEMICONDUCTOR POWER DEVICES

V.G. Kostikov¹ R.V. Kostikov² Ya.S. Gavrilin² V.A. Shakhnov¹

yar2041@yandex.ru shakhnov@bmstu.ru

¹ Bauman Moscow State Technical University, Moscow, Russian Federation
 ² PJSC Research and Production Corporation Almaz, Moscow, Russian Federation

Abstract	Keywords
A shared heat sink plate is commonly used to cool	Semiconductor power devices,
closely spaced semiconductor power devices, its heat	shared heat sink, thermal
dissipation efficiency being determined by its thermal	resistance, thermal
resistance. The paper considers the problem of de-	conductivity equation
termining the thermal resistance of a plate made of an	
insulating material for various positions of semicon-	
ductor devices on the plate. Solving the equations	
obtained yields results that make it possible to select	Received 13.11.2019
the specifications for a heat sink designed to work	Accepted 24.08.2020
with high-voltage semiconductor devices	© Author(s), 2021

REFERENCES

12

[1] Glushitskiy I.V., Zaychenko I.I. The design features of cooling devices for airborne active phased array. *Antenny*, 2008, no. 9 (136), pp. 70–74 (in Russ.).

[2] D'yakonov V.P., ed. Skhemotekhnika ustroystv na moshchnykh polevykh tranzistorakh [Circuit technique of devices on power field transistors]. Moscow, Radio i svyaz Publ., 1994.

[3] Berezin O.K., Kostikov V.G., Shakhnov V.A. Istochniki elektropitaniya radioelektronnoy apparatury [Electric power sources of radioelectronic devices]. Moscow, Tri L Publ., 2000.

[4] Kalistratov N.A. Uluchshenie ekspluatatsionnykh kharakteristik vysokovol'tnykh istochnikov pitaniya dlya moshchnykh lamp s begushchey volnoy. Dis. kand. tekh. nauk [Improving exploitation characteristics of high-voltage power sources for power traveling wave tubes. Dis. Cand. Sc. (Eng.)]. Saratov, SSTU, 2017 (in Russ.).

[5] Starenchenko A.V., Ushkar M.N. Designing of cooling systems on board the aircraft of small aircrafts *Naukoemkie tekhnologii* [Science Intensive Technologies], 2016, vol. 17, no. 10, pp. 3–6 (in Russ.).

[6] Rotkop L.L., Spokoynyy Yu.E. Obespechenie teplovykh rezhimov pri konstruirovanii radioelektronnoy apparatury [Providing thermal regimes at constructing radioelectronic devices]. Moscow, Sovetskoe radio Publ., 1976. Оценка теплового сопротивления электроизолирующего теплоотвода...

[7] Carslaw H.S., Jaeger J.C. Conduction of heat in solids. Oxford Univ. Press, 1948.

[8] Miller W. Jr. Symmetry and separation of variables. Cambridge Univ. Press, 1984.

[9] Privalov I.I. Ryady Fur'ye [Fourier rows]. Moscow, Leningrad, GNTI Publ., 1931.

[10] TU 11–78 aA0.027.002TU. Keramika vacuumplotnaya [Technical conditions TU 11–78 aA0.027.002TU. Vacuum-tight ceramics]. Moscow, 1978 (in Russ.).

[11] Kaynarskiy I.S., Degtyareva E.V., Orlova I.G. Korundovye ogneupory i keramika [Alumina refractory and ceramics]. Moscow, Metallurgiya Publ., 1981.

[12] OST4 G0.029.207–79 Materialy neorganicheskie (steklo, keramika, sitally). Rukovodstvo po vyboru [Nonorganic materials (glass, ceramics, sitalls). Selection guide]. Moscow, 1979 (in Russ.).

[13] ET0.035.367TU. Pasty provodnikovye na osnove dragotsennykh metallov [Technical conditions ET0.035.367TU. Semiconductor paste based on precious metals]. Moscow, 2004 (in Russ.).

[14] Okhotin A.S., Borovikova R.P., Nechaeva T.V., et al. Teploprovodnosť tverdykh tel [Heat conductivity of solids]. Moscow, Energoatomizdat Publ., 1984.

[15] GOST 4784–97. Alyuminiy i splavy alyuminievye deformiruemye. Marki [State standard GOST 4784–97. Aluminium and wrought aluminium alloys. Grades]. Moscow, Standartinform Publ., 2009.

[16] TU 6-06-134–90. Kompozitsii na osnove poliamidov 610 i 66/6 (80:20) [Technical conditions TU 6-06-134–90. Compositions based on 610 i 66/6 (80:20) poliamides]. Moscow, 1990 (in Russ.).

Kostikov V.G. — Dr. Sc. (Eng.), Professor, Department of Electronic Equipment Design and Technology, Bauman Moscow State Technical University (2-ya Bauman-skaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Kostikov R.V. — Leading Engineer, PJSC Research and Production Corporation Almaz (Lenigradskiy prospekt 80, korp. 16, Moscow, 125190 Russian Federation).

Gavrilin Ya.S. — Engineer, PJSC Research and Production Corporation Almaz (Lenigradskiy prospekt 80, korp. 16, Moscow, 125190 Russian Federation).

Shakhnov V.A. — Corresponding Member of the Russian Academy of Sciences, Dr. Sc. (Eng.), Head of Department of Electronic Equipment Design and Technology, Bauman Moscow State Technical University (2-ya Baumanskaya ul. 5, str. 1, Moscow, 105005 Russian Federation).

Please cite this article in English as:

Kostikov V.G., Kostikov R.V., Gavrilin Ya.S., et al. Estimating thermal resistance of an insulated heat sink for semiconductor power devices. *Herald of the Bauman Moscow State Technical University, Series Instrument Engineering*, 2021, no. 1 (134), pp. 4–13 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2021-1-4-13