Александр Сергеевич Севрюгин родился в 1976 г., окончил в 2000 г. МГТУ им. Н.Э. Баумана. Аспирант кафедры "Лазерные и оптико-электронные системы" МГТУ им. Н.Э. Баумана. Автор двух научных работ в области расчета лазерных оптических систем, оптических систем переменного увеличения, систем оптической записи и хранения информации.

A.S. Sevryugin (b. 1976) graduated from the Bauman Moscow State Technical University in 2000. Post-graduate of "Laser and Optical and Electronic Systems" department of the Bauman Moscow State Technical University. Author of 2 publications in the field of design of laser optical systems, optical systems with zoom, systems of optical data record and storage.

УДК 621.396.967.7

В. Е. Карасик, Е. Е. Мухина, В. М. Орлов

О НАБЛЮДЕНИИ МАЛОРАЗМЕРНЫХ ОБЪЕКТОВ В РАССЕИВАЮЩЕЙ СРЕДЕ ЛАЗЕРНЫМИ СИСТЕМАМИ ВИДЕНИЯ С ИМПУЛЬСНОЙ ПОДСВЕТКОЙ

Рассмотрен перенос изображения в рассеивающей среде для наиболее распространенного случая, когда источник активного импульсного подсвета имеет широкую диаграмму направленности, а диаграмма направленного приемника, определяющая элемент изображения, является узкой. В рамках малоуглового приближения получены оптические соотношения для расчета контраста изображения малоразмерного объекта при его наблюдении на протяженном фоне в рассеивающей среде. Показано, что при определенных соотношениях размеров объекта и параметров среды контраст малоразмерных изображений повышается.

Как известно, влияние рассеивающей среды на разрешающую способность и дальность действия систем видения с активным подсветом в наиболее общем виде можно учесть, основываясь на характеристиках, определяющих качество изображения, — функции рассеяния, модуляционной передаточной функции (МПФ), энергетическом коэффициенте передачи полезного сигнала.

Функция рассеяния используется в теории видения в рассеивающих средах [1–3], однако решение уравнения переноса в малоугловом приближении для разных моделей индикатрис рассеяния среды приводит к аналитическим выражениям только для МПФ [1–3]. При этом функция рассеяния представляется с помощью интеграла сложного вида. В работе [2] с использованием процедуры численного интегрирования получена зависимость наблюдаемого контраста от дальности до объекта наблюдения. Из этой зависимости, в частности, следует, что наблюдаемый контраст в изображении малоразмерного объекта возрастает с уменьшением его размера.

В настоящей работе с использованием результатов работы [1] для гауссовой модели объекта наблюдения получены аналитические соотношения для расчета контраста изображения малоразмерных объектов при их наблюдении на протяженном фоне в рассеивающей среде.

Запишем согласно результатам из работы [1] соотношение, описывающее формирование изображения в активной системе наблюдения в виде интеграла свертки:

$$P(\vec{r}_{s0}) = P_{\infty} \iint_{-\infty}^{\infty} \rho(\vec{r}_s) H(\vec{r}_{s0} - \vec{r}_s) d\vec{r}_s, \qquad (1)$$

где \vec{r}_s — координаты точки на поверхности объекта; \vec{r}_{s0} — координата точки пересечения оси диаграммы направленности приемника с поверхностью объекта; $P(\vec{r}_{s0})$ — мощность светового сигнала, образующего изображение; $\rho(\vec{r}_s)$ — коэффициент отражения объекта; P_{∞} мощность сигнала от бесконечно протяженного объекта с коэффициентом отражения $\rho = 1$; $H(\vec{r}_s)$ — нормированная функция рассеяния лазерной системы видения с импульсным подсветом:

$$H(\vec{r}_s) = \frac{E_{\pi}(\vec{r}_s)}{\iint\limits_{-\infty}^{\infty} E_{\pi}(\vec{r}_s)d\vec{r}_s}, \quad \iint\limits_{-\infty}^{\infty} H(\vec{r}_s)d\vec{r}_s = 1;$$

здесь $E_{\rm n}(\vec{r}_s)$ — распределение освещенности, создаваемое в плоскости объекта "фиктивным источником" с диаграммой направленности, такой же, как диаграмма направленности приемника.

Зададим распределение коэффициента отражения в плоскости малоразмерного объекта в виде тест-объекта синусоидальной структуры:

$$\rho(\vec{r}) = \rho_0 \exp\left(-\frac{r^2}{r_0^2}\right) (1 + \kappa_0 \cos(2\pi \vec{\nu} \vec{r})),$$
(2)

где $\rho_0 \exp(-r^2/r_0^2)$ — распределение среднего значения коэффициента отражения для объекта наблюдения; r_0 — эффективный размер объекта, который велик по сравнению с пространственным периодом l синусоидальной структуры; $\nu = 1/l$ — пространственная частота; κ_0 — исходный контраст ограниченного тест-объекта.

Подставив выражение (2) в соотношение (1), получим следующее выражение:

$$P(\vec{r}_{s0}) = P_{\infty} \left(\iint_{-\infty}^{\infty} \rho_0(\vec{r}_{s0} - \vec{r}) H(\vec{r}) \, d\vec{r} + \kappa_0 \cos(2\pi \vec{\nu} \vec{r}_{s0}) \iint_{-\infty}^{\infty} \rho_0(\vec{r}_{s0} - \vec{r}) H(\vec{r}) \cos(2\pi \vec{\nu} \vec{r}) d\vec{r} + \kappa_0 \sin(2\pi \vec{\nu} \vec{r}_{s0}) \iint_{-\infty}^{\infty} \rho_0(\vec{r}_{s0} - \vec{r}) H(\vec{r}) \sin(2\pi \vec{\nu} \vec{r}) \, d\vec{r} \right), \quad (3)$$

где

$$\rho_0(\vec{r}) = \rho_0 \exp\left(-\frac{r^2}{r_0^2}\right).$$

Используя для гауссовой модели объекта (2) тот же подход, что и в работе [2] для ограниченного тест-объекта, рассчитаем контраст изображения полос в центральной части объекта, учитывая, что $\rho_0(\vec{r})$ и $H(\vec{r})$ — действительные и четные функции, а эффективный размер объекта r_0 существенно превышает ширину полос $l = 1/\nu$. Это позволяет последнее слагаемое в выражение (3) положить равным нулю и считать, что $\rho_0(\vec{r}_{s0} - \vec{r}) \approx \rho_0(\vec{r})$.

В этом случае получим

$$P(\vec{r}_{s0}) = P_{\infty} \left(\rho_{0} \iint_{-\infty}^{\infty} \exp\left(-\frac{r^{2}}{r_{0}^{2}}\right) H(\vec{r}) d\vec{r} + \right. \\ \left. + \kappa_{0} \cos\left(2\pi \vec{\nu} \vec{r}_{s0} \rho_{0}\right) \iint_{-\infty}^{\infty} \exp\left(-\frac{r^{2}}{r_{0}^{2}}\right) H(\vec{r}) \cos\left(2\pi \vec{\nu} \vec{r}\right) d\vec{r} \right) = \\ \left. = P_{\infty} \rho_{0} \iint_{-\infty}^{\infty} \exp\left(-\frac{r^{2}}{r_{0}^{2}}\right) H(\vec{r}) d\vec{r} \times \right. \\ \left. \times \left(\int_{1+\kappa_{0}}^{\infty} \exp\left(-\frac{r^{2}}{r_{0}^{2}}\right) H(\vec{r}) \cos\left(2\pi \vec{\nu} \vec{r}\right) d\vec{r} \right) \right] \right) \left(4 \right)$$

Из выражения (4) следует, что контраст $\kappa_{\rm H}$ изображения полос в центральной части объекта связан с исходным контрастом κ_0 соотношением

где

$$T(\nu) = \frac{\iint\limits_{-\infty}^{\infty} E_{\rm m} \cos(2\pi \vec{\nu} \vec{r}) d\vec{r}}{\iint\limits_{-\infty}^{\infty} E_{\rm m}(\vec{r}) d\vec{r}}$$

— МПФ системы; $\kappa_0 T(\nu)$ — контраст изображения неограниченного тест-объекта;

$$F(\vec{r}_0) = \frac{\iint\limits_{-\infty}^{\infty} \exp\left(-\frac{r^2}{r_0^2}\right) E_{\pi}(\vec{r}) d\vec{r}}{\iint\limits_{-\infty}^{\infty} E_{\pi}(\vec{r}) d\vec{r}} = \frac{P_{r_0}}{P_{r_0 \to \infty}},$$
(6)

где P_{r_0} — поток энергии через площадку с диаметром $2r_0$; $P_{r_0 \to \infty}$ — поток энергии через бесконечную площадку.

В малоугловом приближени
и $F(\vec{r_0})$ представляет собой интеграл от функции рассеяния по площадке, ограниченной контуром объекта, так что

$$P_{r_0 \to \infty} = P_0 \exp(-kz),$$

где k — показатель поглощения среды, P_0 — мощность фиктивного источника.

При $r_0 \to \infty$ имеем $F(\vec{r_0}) \to 1$. Поскольку с уменьшением размеров тест-объекта величина $F(\vec{r_0})$ уменьшается, то, следовательно, видимость улучшается с уменьшением размеров объекта [2].

Такая зависимость контраста $\kappa_{\rm H}$ от размера тест-объекта является следствием того, что изменяется соотношение между нерассеянной и многократно рассеянной компонентами светового поля в изображении объекта. Если объект малоразмерный, т.е. его масштаб намного меньше пространственного масштаба функции рассеяния, то информацию об объекте несет только нерассеянная компонента. В то же время, при увеличении $\kappa_{\rm H}$ уменьшается коэффициент передачи полезного сигнала, что приводит к уменьшению отношения сигнал/шум.

Входящая в выражение (6) функция $E_{\rm n}(\vec{r})$ представляется в виде интеграла Фурье–Бесселя, что ограничивает возможности практического использования данного выражения, поэтому для нахождения функции $F(\vec{r}_0)$ запишем формулу (6) в частотной форме:

$$F(\vec{r}_{0}) = \frac{4\pi^{2} \iint_{-\infty}^{\infty} R(\vec{\nu}) \tilde{L}_{n}(\vec{\nu}, z, 0) d\vec{\nu}}{P_{0} \exp(-kz)};$$
(7)

здесь

$$R(\vec{\nu}) = \frac{1}{2\pi} \iint_{-\infty}^{\infty} \exp\left(-\frac{r^2}{r_0^2}\right) \exp(-i\vec{\nu}\vec{r}) \, d\vec{r} = \frac{r_0^2}{2} \exp\left(-\frac{r_0^2\nu^2}{4}\right); \quad (8)$$

$$ilde{L}_{\pi}(ec{
u},z,0)=rac{1}{4\pi^2} \iint\limits_{-\infty}^{\infty}E_{\pi}(z,ec{r})\exp(iec{
u}ec{r})dec{r};$$

z — расстояние от лазерной системы видения до объекта наблюдения; $\tilde{L}_{\pi}(\vec{\nu}, z, 0)$ — решение уравнения переноса в малоугловом приближении [1] для индикатрисы рассеяния вида

$$\chi(\gamma) = rac{2}{\mu^2} \exp{\left(-rac{\gamma}{\mu}
ight)},$$

где μ — параметр индикатрисы рассеяния, и гауссовой модели фиктивного источника. Имеем

$$\tilde{L}_{\pi}(\vec{\nu},z,0) = \frac{P_0}{4\pi^2} \exp\left(-\nu^2 \frac{z^2 \alpha_{\pi}^2}{4}\right) \exp\left(-\varepsilon z + \frac{\sigma z}{\sqrt{(\mu z \nu)^2 + 1}}\right); \quad (9)$$

здесь $\sigma = \Lambda \varepsilon$ — показатель рассеяния, Λ — коэффициент выживания фотона; ε — показатель ослабления; $2\alpha_{n}$ — мгновенный угол зрения приемной системы.

Подставляя выражения (8) и (9) в формулу (7) и используя процедуру вычислений из работы [1], получим

$$B(z, \vec{r_0}) = \Lambda^2 \varepsilon^2 \frac{r_0^2 + (z\alpha_n)^2}{2\mu^2},$$

$$F(z, \vec{r_0}) = \frac{r_0^2}{r_0^2 + (\alpha_n z)^2} \frac{\frac{B(z, \vec{r_0})}{(\Lambda \varepsilon z)^3} + \exp\left(-(\Lambda \varepsilon z)\left(1 + \frac{B(z, \vec{r_0})}{(\Lambda \varepsilon z)^3}\right)\right)}{1 + \frac{B(z, \vec{r_0})}{(\Lambda \varepsilon z)^3}}.$$
(10)

При угловых размерах объекта наблюдения $\theta = r_0/z > 3\alpha_{\rm n}$ величина $F(z, \vec{r_0})$ не зависит от угла $2\alpha_{\rm n}$ начальной расходимости фиктивного источника.

На рис. 1 приведена зависимость параметра $F = F(z, \vec{r_0})$ от дальности z для различных значений r_0 . При расчетах параметра F по формуле (10) были выбраны значения $\alpha_{\pi} = 0$, $\mu = 0,07$. Кривые, рассчитанные по формуле (10), хорошо согласуются с теоретическими и экспериментальными результатами [4, 5].

Рис. 1. Зависимость параметра F от дальности: $r_0 = 0,1 (1); 0,5 (2); 1 (3); 10 (4)$ м

Далее, пусть малоразмерный объект наблюдается на протяженном фоне с постоянным коэффициентом отражения ρ_{ϕ} , причем будем полагать, что $\rho_0 > \rho_{\phi}$.

Для активной системы с импульсным подсветом, в которой осуществлена эффективная отсечка помехи обратного рассеяния, сигнал, образующий изображение, формируется из отраженного объектом сигнала $P_{\rm of}$ и сигнала $P_{\rm \phi}$ от фона:

$$P = P_{\rm of} + P_{\rm fr}$$

где $P_{\mathrm{o}\mathrm{b}}=
ho_{\mathrm{o}}P_{\mathrm{o}}F,$ $P_{\mathrm{b}}=
ho_{\mathrm{b}}P_{\mathrm{o}}(1-F).$

Поскольку P_{ϕ} не зависит от \vec{r}_{s0} , то формулу (5) можно представить в виде

$$\kappa_{\rm H} = \frac{\kappa_0 T(\nu)}{\left(1 + \frac{P_{\rm \phi}}{P_0}\right)F} = \frac{\kappa_0 T(\nu)\rho_0}{\rho_0 F + \rho_{\rm \phi}(1 - F)}.$$
(11)

Если $F \ll 1$, то имеем

$$\kappa_{\rm H} \approx \kappa_0 T(\nu) \frac{\rho_0}{\rho_0}$$

Если F = 1, то имеем

$$\kappa_{\rm H} = \kappa_0 T(\nu).$$

Из формулы (11) следует, что при измерении МПФ среды размеры тест-объекта должны выбираться с таким расчетом, чтобы выполнялось условие $F(\vec{r}_0) \approx 1$ [2]. В то же время, при видении малоразмерных высококонтрастных объектов величина наблюдаемого контраста в соответствии с формулой (11) может превысить единицу вблизи нулевой пространственной частоты. Это свидетельствует о том, что принятые при выводе соотношения (5) допущения являются не вполне корректными для всего диапазона пространственных частот. Поэтому предлагается использовать данную методику расчета при тех значениях МПФ, когда величина $T(\nu)$ слабо зависит от пространственной частоты. На рис. 2 представлены зависимости наблюдаемого контраста $\kappa_{\rm H}$ от угловой пространственной частоты ν' при фиксированной дальности для различных угловых размеров объекта, а также кривая МПФ среды, рассчитанная для той же дальности. Из рисунка видно, что МПФ стремится к постоянному значению при $\nu' = 10$ рад⁻¹.

На рис. 3 представлена кривая изменения наблюдаемого контраста в изображении малоразмерного объекта для дальности z = 10 м и значения $T(\nu) = 0.147$.

Рис. 2. Наблюдаемый контраст в изображении объекта и МПФ среды: $r_0 = 0.01 (1); 0.1 (2); 1 (3)$ м

Рис. 3. График изменения наблюдаемого контраста в изображении малоразмерного объекта

Полученные в настоящей работе соотношения могут быть использованы при создании алгоритмов компьютерного моделирования лазерных систем видения с импульсным подсветом объектов широким световым пучком и регистрацией излучения многоэлементным приемником изображения (например, ПЗС-матрицей).

СПИСОК ЛИТЕРАТУРЫ

- 1. Карасик В.Е., Орлов В.М. Лазерные системы видения. М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. 352 с.
- 2. Браво-Животовский Д. М., Долин Л. С., Лучинин А. Г. Некоторые вопросы теории видения в мутных средах // Изв. АН СССР. Сер. Физика атмосферы и океана. 1969. Т. 5. № 7. С. 672–684.
- 3. Браво-Животовский Д.М., Долин Л.С., Лучинин А.Г., Савельев В.А. О структуре узкого пучка света в морской воде // Изв. АН СССР. Сер. Физика атмосферы и океана. 1969. Т. 5. № 2. С. 160–167.
- 4. Оптика океана / Под ред. А.С. Монинина. М.: Наука, 1983.

Статья поступила в редакцию 27.06.2002

Валерий Ефимович Карасик родился в 1939 г., окончил в 1964 г. МВТУ им. Н.Э. Баумана. Д-р техн. наук, профессор кафедры "Лазерные и оптико-электронные системы" МГТУ им. Н.Э. Баумана. Автор более 120 научных работ в области лазерного зондирования, локации и дальнометрии.

V.E. Karasik (b. 1939) graduated from the Bauman Moscow Higher Technical School in 1964. D.Sc. (Eng.), professor of "Laser and Optical-and-Electronic Systems" department of the Bauman Moscow State Technical University. Author of over 120 publications in the field of the laser sounding, location and telemetry.