
THEORETICAL FUNDAMENTALS
OF INFORMATION TECHNOLOGY

SIZE OF REVERSIBLE CIRCUITS AS A MEASURE
OF EVEN PERMUTATION COMPLEXITY

D.V. Zakablukov

Bauman Moscow State Technical University, Moscow, Russian Federation
e-mail: dmitriy.zakablukov@gmail.com

The article considers even permutation complexity by estimating the size of
reversible circuits composed of NOT, CNOT and 2-CNOT gates implementing
these permutations. It is proved that every even permutation of Zn2 set can be
implemented by a reversible circuit with the gate complexity equivalent up to about
n2n/ log2 n order, without the use of additional inputs; all other even permutations
can be implemented by reversible circuit with less gate complexity, without the
use of additional inputs. It is established that every even permutation of Zn2 set
can be implemented by a reversible circuit with . 2n+1 gate complexity, using
∼ 5 ∙ 2n/n additional inputs. For every even permutation usage of additional inputs
allows decreasing the gate complexity of reversible circuits by implementing them.
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Introduction. In discrete mathematics a measure of transformation
complexity is introduced to estimate the complexity of this transformation.
The gate complexity is often considered as the measure of Boolean function
complexity, that is the minimal size of any circuit computing this function.
It was first suggested by K. Shannon in work [1], which is the origin of the
circuit complexity theory. Nowadays, the complexity of Boolean functions
is well researched: the lower asymptotic bound (Shannon’s theorem)
and the upper asymptotic bound (Lupanov’s theorem), as well as their
asymptotic equation 2n/n for the n-ary Boolean function [2] have been
proved. In work [3] the problem about complexity of Zn2 → Zn2 Boolean
transformations is considered: it has been proved that the complexity of this

transformation does not exceed O
( n2n

n+ log2 n

)
; it is proved by explicit

construction of the circuit defining this transformation and composed of
NOT, AND and XOR gates.

In this article the gate complexity of circuits composed of reversible
gates NOT, CNOT and 2-CNOT is considered. The definition of reversible
gates NOT and k-CNOT, as well as the definition of reversible circuits
including these gates, are presented, for example, in the work [4]. In works
[5, 6] it is proved that:
• gates NOT, CNOT and 2-CNOT define even permutation in the

circuit with n > 3 inputs;
• the set of permutations defined by gates NOT, CNOT and 2-CNOT

with n inputs, given n 6 3 generating a symmetric group S(Zn2 ), but given
n > 3 alternating-sign group A(Zn2 ).
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In view of the aforesaid, the gate complexity of the minimal reversible
circuit consisting of gates NOT, CNOT and 2-CNOT will be regarded as
the measurement of complexity of even permutation.

In works [5–13] various algorithms of synthesis of reversible circuits are
suggested, and in some cases upper bound of synthesized circuit is given.
But until now, exact asymptotic bounds of reversible circuits, composed of
gates NOT, CNOT and 2-CNOT and defining some even permutation from
A(Zn2 ) group were unknown.

In this article it will be proved by estimating the number of nonequivalent
reversible circuits, that there is an even permutation h ∈ A(Zn2 ) that cannot
be defined by the reversible circuit composed of gates NOT, CNOT and
2-CNOT, without the use of additional inputs with . n2n−1/ log2 n gate
complexity. Also it will be proved that any even permutation h ∈ A(Zn2 )
can be defined by a reversible circuit composed of gates NOT, CNOT и
2-CNOT without the use of additional inputs with . 52n2n/ log2 n gate
complexity. It will be shown, that every even permutation h ∈ A(Zn2 ) can be
implemented by reversible circuit composed of NOT, CNOT and 2-CNOT
gates, using ∼5∙2n/n additional inputs with . 2n+1gate complexity.

Terms of reference. Let us consider the following model of a reversible
circuit: all of the gates in the circuit have the same number of the inputs;
outputs of one gate are directly connected to the inputs of the following
gate. In this case, inputs of the first gate are inputs of the reversible circuit,
outputs of the last gate are outputs of the reversible circuit.

Basic definition of the reversible gates NOT and k-CNOT was given
in work [4]. Recall that NOT gate, inversing value at jth input is denoted
by Nj in work [4]; and the gate k-CNOT (extended Toffoly’s element with
k controlling inputs), inverting the value at j th input then and only then,
when the value is equal to 1 at all of the inputs i1, . . . , ik is denoted through
Ci1,...,ik;j = CI;j; i1, . . . , ik is a set of controlling inputs, j /∈ I .

Any reversible circuit with n > 3 inputs composed of gates NOT,
CNOT and 2-CNOT defines some sort of even permutation at Zn2 set.
In this case, this circuit can implement some Boolean transformation.
To work with definition of the reversible circuit implementing given
Boolean transformation Zm2 → Zm2 , the ϕn,n+k : Zn2 → Zn+k2 and
ψπn+k,n : Z

n+k
2 → Zn2 , images of the following type will be needed

ϕn,n+k(〈x1, . . . , xn〉) = 〈x1, . . . , xn, 0, . . . , 0〉;

ψπn+k,n(〈x1, . . . , xn+k〉) = 〈xπ(1), . . . , xπ(n)〉, π ∈ S(Zn+k).

Let us denote ϕn,n+k as an extending image; ψπn+k,n as a reducing
image; π permutation as the output rearrangement.
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Let us consider an arbitrary even permutation h ∈ A(Zn2 ) that defines
fh : Zn2 → Zn2 Boolean transformation. Let us introduce definitions of
reversible circuits, implementing fh transformation either with or without
additional inputs.

Definition 1. Reversible circuit Sg implements transformation fh
without the use of extra inputs (extra memory), if it has precisely n
inputs, in addition there exists such permutation π ∈ S(Zn), that Boolean
transformation g : Zn2 → Zn2 defined by this circuit fulfils ψπn,n(g(x)) =
= fh(x), (x) ∈ Zn2 condition.

Definition 2. Reversible circuit Sg implements transformation fh using
k > 0 extra inputs (extra memory) if it has n + k inputs; in addition
there is such permutation π ∈ S(Zn+k), that Boolean transformation
g : Zn+k2 → Zn+k2 defined by this circuit fulfils ψπn+k,n(g(ϕn,n+k(x))) =
= fh(x), (x) ∈ Zn2 condition.

Let us note that a reversible circuit Sg defines transformation fh when
g(x) = fh(x).

We recall some notions from the mathematical analysis [2]. If f(n) and
g(n) are real-valued positive functions of natural variable n, then:
• f(n)&g(n), if for any ε > 0 there is N = N(ε), then for any n > N

inequation (1− ε)g(n) 6 f(n) (function f(n) asymptotically exceeds or is
equal to g(n) function) is true;
• f(n) ∼ g(n), if f(n) & g(n) and g(n)&f(n) (f(n) and g(n)

functions are asymptotically equal or equivalent), then lim
n→∞

f(n)/g(n) = 1;

• f (n)�g (n) if 0 < c1 < f(n)/g(n) < c2 (f(n) and g(n) functions
are equivalent with the order accuracy).

Now we can proceed to the estimation of the gate complexity of a
reversible circuit, composed of gates NOT, CNOT and 2-CNOT, defining
even permutation h ∈ A(Zn2 ).

Asymptotic lower bound. Let us introduce a set of reversible gates
named Ωmn , that includes all NOT and k-CNOT gates, k 6 m, each has
exactly n inputs.

There are total (n− k)

(
k

n

)

different k-CNOT gates having n inputs.

We are interested in Ω2n set that consists of all possible NOT, CNOT and
2-CNOT gates with n inputs. The size of this set is equal to

|Ω2n| =
2∑

k=0

(n−k)

(
k

n

)

= n+n(n−1)+
n(n− 1)(n− 2)

2
= O(n3). (1)

In the reversible circuit model in question this situation is possible,
when rearrangement of two adjacent gates produces the equivalent circuit
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(defining the same even permutation), if these gates are independent.
Conditions of independence of two k-CNOT gates were described in
work [4].

In the Ω2n set all the gates have no more than two controlling inputs,
therefore when n→∞ some sequential gates can be pairwise independent.
Determine the probability of the case, when k of such gates are pairwise
independent. Let us assume the following: CI;t gate is independent of every
preceding gate, if there is no such CI′;t′ gate preceding to the concerned
one, that t ∈ I ′ or t′ ∈ I . We denote by Pi the probability of the case, when
these conditions are met for ith gate in the sequence, P1 = 1. In this case,
the probability P (k) when k sequential gates are pairwise independent, is

P (k) =
k∏

i=1

Pi.

The probability Pi is higher for NOT and CNOT gates for
2-CNOT gates, because they have less controlling inputs. For these
gates the probability of meeting the second condition described above
is higher. Therefore, it is possible to state without loss of generality in
P (k) calculation, that all gates are 2-CNOT.

The first gate C{j1,l1};t1 can be chosen by any possible way. When
choosing the next gate C{j2,l2};t2 , independently from the first one, the
values of j2 and l2 must not coincide with t1: There exist (n−12 ) ways to do
this. The value of t2 must not be equal to j1, l1, j2, l2: There are n − 4
ways to choose the value of t2. Similar reasoning can be done also for the
third gate C{j3,l3};t3 : there are (n−22 ) ways to choose values of j3 and l3 and
n − 6 ways to choose the value of t3 Therefore, probability Pk satisfies

the Pk >
(n− 2k)

(
n−k+1
2

)

(n− 2)
(n
2

) or Pk >
(n− 2k)(n− k + 1)(n− k)

(n− 2)n(n− 1)
relation.

The “>” sign means that in the real circuit there are more ways to choose
ith gate so it is independent with every preceding gate. Given k = o(n)
and n → ∞ the probability Pk > 1 − o(1), Pk ∼ 1, then also P (k) ∼ 1.
Therefore, the proportion of reversible circuits, composed of the gates from
Ω2n set, with at least two dependent gates among k = o(n) sequential gates,
tends to zero.

Let us prove by estimating the number of different nonequivalent
circuits that there is an even permutation h ∈ A(Zn2 ) that can not be
defined by a reversible circuit composed of the gates from Ω2n set and
without the use of additional inputs with . n2n−1/ log2 n gate complexity.

Let us denote the complexity of minimal reversible circuit by L(h),
composed of gates from Ω2n set, without the use of additional inputs and
defining h ∈ A(Zn2 ) even permutation. Let us define the Shannon function
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L(n) = max
h∈A(Zn2 )

L(h). Let us consider L∗(h) and L∗(n) in the same way

for reversible circuits using additional inputs.
Theorem 1. L(n)&n2n−1/log2n.
J Now we will show that for almost all permutations h ∈ A(Zn2 )

there is an equation L(n)&n2n−1/log2n . Let us estimate the number of
reversible circuits composed of gates from Ω2n set and defining various even
permutations on Zn2 set with s gate complexity. Let us denote this value by
C∗(n, s).

If r = |Ω2n|, then C∗(n, s) 6 rs. We denote by C(n, s) the total number
of all nonequivalent reversible circuits composed of gates from Ω2n set and

with the gate complexity not greater than s: C(n, s) =
s∑

i=0

C∗(n, i) 6

6
rs+1 − 1
r − 1

.

We denote by k the number of sequential gates in the circuit. Given
k = o(n) and k = o(s), it is possible to state, based on the criterion of
equivalence of the reversible circuits, that

C(n, s) 6
rs+1 − 1

(k!)s/k(r − 1)
6

rs+1 − 1
(k!)(s/k)−1(r − 1)

. (2)

The number of all even permutations on Zn2 set is equal to |A(Zn2 )| =
= (2n)!/2. Using the Stirling formula x!&(x/e)x, we estimate the value of
log2(C(n, s)/|A(Z

n
2 )|):

log2
C(n, s)

|A(Zn2 )|
6 log2

2rs+1

(k!)(s/k)−1(r − 1)(2n)!
6 log2

2rs+1e2
n+s−k

ks−k(r − 1)2n2n
;

log2
C(n, s)

|A(Zn2 )|
& 1 + (s+ 1) log2 r + (2

n + s− k) log2 e−

−(s− k) log2 k − log2(r − 1)− n2
n.

According to formula (1), r 6 n3 : log2
C(n, s)

|A (Zn2 )|
&3slog2n +

+2 (2n + s− k)− (s− k) log2k − n2
n.

Choose the value of s, so that log2(C(n, s)/|A(Z
n
2 )|) 6 − log2 n. If

k = n/ log2 n, then:

3s log2 n+ 2

(

2n + s−
n

log2 n

)

−

−

(

s−
n

log2 n

)

(log2 n− log2 log2 n)− n2
n = − log2 n;

s(2 log2 n+ 2 + log2 log2 n) + 2
n+1−
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−
2n

log2 n
+ n−

n log2 log2 n

log2 n
− n2n = − log2 n;

s =
n2n + o(n2n)

2 log2 n+ o(log2 n)
.

It is obvious that given the value of s, log2(C(n, s)/|A(Z
n
2 )|) →

→ −∞ given n → ∞, i.e. the part of reversible circuits composed of
gates from Ω2n set without the use of additional inputs, with a complexity
less than s, tends to zero.

It is important that if the above described values of s and k , the
conditions k = o(n), k = o(s) are fulfilled, therefore the application of
formula (2) is correct. Then s ∼ n2n−1/log2n. That shows the validity of
the theorem. I

Asymptotic upper bound. In paper [7] the algorithm of synthesis of
reversible circuits, composed of gates NOT, CNOT and 2-CNOT, based
on the theory of permutation groups, was proposed. It was proved that the
gate complexity of the synthesized circuit satisfies the following ratio:

L(n) . 7n2n. (3)

This algorithm is based on the representing of permutation as the
production of pairs of independent transpositions followed by the imple-
mentation of these pairs using reversible gates. Generalizing this algorithm
for the synthesis of the large number of independent transpositions, it is
possible to obtain an asymptotic upper bound of the circuit-size complexity
L(n).

Theorem 2. L(n).52n2n/ log2 n.
J Let us demonstrate that L(h) . 52n2n/log2n for all values of

h ∈ A(Zn2 ). Any permutation h ∈ A(Zn2 ) can be represented as a
composition of disjoint cycles so that the sum of the lengths of these
cycles does not exceed 2n. For the composition of two independent cycles
the following equation is true:

(i1, i2, . . . , il1) ◦ (j1, j2, . . . , jl2) =

= (i1, i2) ◦ (j1, j2) ◦ (i1, i3, . . . , il1) ◦ (j1, j3, . . . , jl2), (4)

and for the cycle with the length l > 5 the following equation is true

(i1, i2, . . . , il) = (i1, i2) ◦ (i3, i4) ◦ (i1, i3, i5, i6, . . . , il). (5)

We represent the permutation h as a composition of independent
transposition groups, with K transpositions in each group, and the remaining
permutation h′:

h = ◦
xt,yt∈Z

n
2

((x1,y1) ◦ . . . ◦ (xK ,yK)) ◦ h
′. (6)
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Now we will estimate the number of independent cycles and their length
for the h′ permutation. According to (4) and (5) formulae, it’s impossible to
obtain K independent transpositions in the h′ decomposition, if the number
of independent cycles is strictly less than K and their length is strictly less
than 5. Therefore, the sum of the lengths of cycles in the h′ decomposition
does not exceed 4(K − 1).

A set of moving points of an arbitrary permutation g ∈ S(Zn2 ):
Mg = {x ∈ Zn2 |g(x) 6= x} can be denoted by Mg: given the foregoing,
|Mh| 6 2n, |Mh′ | 6 4(K − 1).

According to (4)–(6) formulae, it is possible to get no more than
|Mh|/K groups in the decomposition of h permutation, each group
having K independent transpositions, and no more than |Mh′ |/2 pairs
of independent transpositions in the decomposition of h′ permutation and
no more than one pair of dependent transpositions.

A pair of dependent transpositions (i, j) ◦ (i, k) can be expressed by
the product of two pairs of independent transpositions: (i, j) ◦ (i, k) =
= ((i, j) ◦ (r, s)) ◦ ((r, s) ◦ (i, k)).

Considering the above information, it is possible to estimate the upper
bound of L(h):

L(h) 6
|Mh|
K

L(g(K)) +
|Mh′ |
2

L(g(2)) + 2L(g(2));

L(h) .
2n

K
L(g(K)) + 2KL(g(2)),

(7)

where g(i) is an arbitrary permutation, representing the product of i
independent transpositions.

Now we will estimate the value of L(g(K)) for the arbitrary g(K)permu-
tation. Suppose k = |Mg(K) | = 2K. Implementing the g(K) permutation
with the gates from Ω2n set will be carried out by the method described
in work [7]: by conjugation we will reduce g(K) permutation to a certain
permutation, defined by a simple way. The conjugation does not change the
cyclic structure of the permutation, as well as the result of the conjugation,
g(K) permutation will always remain as a composition of K independent
transpositions.

For g(K) = (x1,y1)◦ . . .◦ (xK ,yK) permutation A matrix is as follows:

A =









x1
y1
. . .
xK
yK








=











a1,1 . . . a1,n
a2,1 . . . a2,n
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
ak−1,1 . . . ak−1,n
ak,1 . . . ak,n











. (8)
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Let us impose restrictions on the k value, so that it can only be a power
of two: k = 2log2 k. If k 6 log2 n, there are no more than 2k pairwise
distinct columns in A matrix. Without the loss of generality, let us assume
that such columns are the first 2k columns. If so, for any j th column j > 2k

there is an equal ith column, i 6 2k. Effecting on permutation g(K) with
the permutation conjugation defined by Ci;j gate, it is possible to zero the
j th column of A matrix (this requires two CNOT gates). By repeating these
steps for all the columns with indexes more than 2k, we will get a new
g
(K)
1 permutation, for which the A matrix will have the form

A1 =
















a1,1 . . . a1,2k
a2,1 . . . a2,2k
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
ak−1,1 ∙ ∙ ∙ ak−1,2k
ak,1 ∙ ∙ ∙ ak,2k

0 ∙ ∙ ∙ 0
0 ∙ ∙ ∙ 0
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
0 . . . 0
0 . . . 0

︸ ︷︷ ︸
n−2k
















.

To obtain A1 matrix, L1 6 2n CNOT gates are needed.
For all a1,i = 1 we will effect on permutation g(K)1 with the permutation

conjugation, defined by Ni gate. To do this, L2 6 2k+1 NOT gates are
needed. The result is a permutation g(K)2 and corresponding A2 matrix:

A2 =
















0 . . . 0
b2,1 ∙ ∙ ∙ b2,2k
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
bk−1,1 ∙ ∙ ∙ bk−1,2k
bk,1 ∙ ∙ ∙ bk,2k

0 ∙ ∙ ∙ 0
0 ∙ ∙ ∙ 0
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
0 ∙ ∙ ∙ 0
0 ∙ ∙ ∙ 0

︸ ︷︷ ︸
n−2k
















.

Elements of A2 matrix are denoted by bi,j to show their distinction from
elements of A1 matrix.

Now we will find a number in correspondence with the vector by image

ϕm : Zm2 → Z2m : ϕm(〈x1, . . . , xm〉) =
m∑

i=1

xi2
i−1. We will sequentially

apply a conjugation to g(K)2 permutation, affecting all rows of A2 matrix,
starting with the second row. Let the current row have index i. This row is
pairwise different from all the rows with an index less than i, because all
the rows of A2 matrix are different. There are two options:
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1. There exists bi,j = 1, j > log2 k matrix element. In this case, for
all bi,j′ = 1, j′ 6= j, j′ > log2 k elements, we will apply the conjugation
with the permutation, defined by Cj;j′ gate. To do this, no more than
2(2k − log2 k − 1) CNOT gates are needed. Then, for all j′ 6 log2 k we
will apply the conjugation with the permutation, defined by Cj;j′ gate, so
that

ϕlog2 k(〈b
′
i,1, . . . , b

′
i,log2 k

〉) = i− 1. (9)

To do this, no more than 2 log2 k CNOT gates are needed. At the
last step we apply the conjugation with the permutation, defined by gate
C{1,...,log2 k};j . Before and after doing this, it is possible, we will need
to invert no more than log2 k values of b′i,j′ = 0, j

′ 6 log2 k, using
permutations defined by NOT gates. The gate C{1,...,log2 k};j has log2 k
controlling inputs, and so it can be changed to a set of no more than
8(log2 k − 3) 2-CNOT gates [5].

After doing these transformations we have a row of matrix, with all
elements of indices higher than log2 k, which is equal to 0, with the first
log2 k elements of this row satisfying (9) condition. To do this L(i)3 gates
from set Ω2n are needed in total:

L
(i)
3 6 2(2

k − log2 k − 1) + 2 log2 k+

+ 2(log2 k + 8(log2 k − 3) + log2 k);

L
(i)
3 6 2

k+1 + 20 log2 k.

2. There is no such an element bi,j of A2 matrix, when bi,j = 1,
j > log2 k. It is possible to say, that for all i′ < i the following inequation
is true: ϕlog2 k(〈bi,1, . . . , bi,log2 k〉) 6= ϕlog2 k(〈bi′,1, . . . , bi′,log2 k〉). In the
opposite case, there would be two identical rows in A2 matrix, which
does not comply with a cyclic type of g(K)2 permutation. We apply the
conjugation with the permutation defined by C{1,...,log2 k};log2 k+1 gate, so
that it results in bi,log2 k+1 = 1. Before and after doing this, we will possibly
need to invert no more than log2 k values bi,j′ = 0, j′ 6 log2 k using
permutations defined by NOT gates. The C{1,...,log2 k};j gate has log2 k
controlling inputs, and so it can be changed to a set of no more than
8(log2 k − 3) 2-CNOT gates[5].

After this, we perform the same operations, as in the previous case.
Therefore, to reduce the ith row to the same view as in previous case
(see p. 1), in total L(i)3 gates from Ω2n set are required: L(i)3 6 2(log2 k +
+ 8(log2 k − 3) + log2 k) + 2

k+1 + 20 log2 k = 2
k+1 + 40 log2 k.

As the result of all the above described operations, sequentially applied
to all rows of A2 matrix starting from the second one, a new permutation
g
(K)
3 and corresponding A3 matrix will be formed:
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A3 =
















0 0 0 . . . 0
1 0 0 . . . 0
. . . . . . . . . . . . . . .
0 1 1 . . . 1
1 1 1 . . . 1

︸ ︷︷ ︸
log2 k

0 . . . 0
0 . . . 0
. . . . . . . . .
0 . . . 0
0 . . . 0

︸ ︷︷ ︸
n−log2 k
















.

To do this L3 gates from Ω2n set are needed in total: L3 =
k∑

i=2

L
(i)
3 6

6 (k − 1)(2k+1 + 40 log2 k).
Now we will apply the conjugation with the permutation to permutation

g
(K)
3 defined by Ni gate for all i > log2 k. To do this L4 6 2(n − log2 k)

NOT gates are required. The result is a permutation g(K)4 and corresponding
A4 matrix:

A4 =
















0 0 0 . . . 0
1 0 0 . . . 0
. . . . . . . . . . . . . . .
0 1 1 . . . 1
1 1 1 . . . 1

︸ ︷︷ ︸
log2 k

1 . . . 1
1 . . . 1
. . . . . . . . .
1 . . . 1
1 . . . 1

︸ ︷︷ ︸
n−log2 k
















.

Matrix A was formed according to formula (8), the permutation g
(K)
4

is a composition of K independent transpositions, therefore, it can be said
that g(K)4 permutation can be defined by C{n,n−1,...,log2 k+1};1 gate. This gate
has n− log2 k controlling inputs, so it can be replaced by a composition of
no more than L5 = 8(n− log2 k − 3) 2-CNOT gates [5].

The given algorithm allows obtaining g(K)4 permutation from the given
g(K) permutation by the conjugation: g(K)4 =

(
g(K)

)g1◦g2◦g3◦g4 , where gi is
a permutation, defined by the algorithm of Li/2 complexity using gates
from Ω2n set. As it was shown in work [7], for any g permutation, defined
by a composition of gates from Ω2n set, equation g = g−1 is true. Therefore

g(K) =
(
g
(K)
4

)g−14 ◦g−13 ◦g−12 ◦g−11
. So, the upper bound of L(g(K)) can be

estimated:
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L(g(K)) 6
5∑

i=1

Li;

L(g(K)) 6 2n+ 2k+1 + (k − 1)(2k+1 + 40 log2 k)+
+2(n− log2 k) + 8(n− log2 k − 3).

Reducing this formula, we will obtain L(g(K)) 6 12n + k(2k+1 +
+40 log2 k)−50 log2 k−24. Given K = 2 the inequation L(g(2)) 6 12n+
+ 324 is true.

Let us substitute calculated estimations into formula (7):

L(h) .
2n

k/2
(12n+ k(2k+1 + 40 log2 k))) + k(12n+ 324);

L(h) . 2n+1
(
12n

k
+ 2k+1 + o(k)

)

+O(kn).

Given k = o(n) the estimation of L(h) can be reduced: L(h) . 2n+1×

× (
12n

k
+ 2k+1).

Let m = log2 n− log2 log2 n. The proof required k to be the power of

two. Let k = 2log2m, then m/2 6 k 6 m and L(h) . 2n+1
( 12n
m/2

+

+2m+1
)
= 2n+1

(
24n

log2 n− log2 log2 n
+
2n

log2 n

)

. Therefore L(h) .

. 52n2n/log2n for all h ∈ A(Zn2 ). Hence, L(n) . 52n2n/ log2 n. I
Corollary. Given k = 4 the L(n) . 6n2n relation is true, which is
asymptotically less than estimation (3), given in work [7].

Combining the lower and upper bounds L(n) it is possible to formulate
the main theorem of this work.

Theorem 3. L (n)�n2n/log2
J Results from theorems 1 and 2. I
Reducing gate complexity, using additional inputs. In work [3] it was

proved that for any Boolean transformation f : Zn2 → Zn2 it is possible to
construct the implementing circuit composed of gates on {¬,∧,∨} basis,
with O(2m/m) gate complexity, where m = n + log2 n. Such a circuit
includes a multi-terminal circuit as a sub-circuit, computing all Boolean
functions of n− k variables. In order to prove the following representation
of f transformation was used (equivalent to Boolean function expansion
for k variables):

f(〈x1, . . . , xn〉) = ⊕
a1,...,ak∈Z2

xa11 ∧ . . .∧x
ak
k ∧f(〈a1, . . . , ak, xk+1, . . . , xn〉).

Using the same approach we will prove that the upper bound of
reversible circuits can be reduced by using additional inputs. Let us
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recall, that the value of L∗(n) corresponds to the maximum size of
reversible circuit from all minimal circuits, implementing even permutation
h ∈ A(Zn2 ) using additional inputs.

Theorem 4. Given N ∼ 5 ∙ 2n/n additional inputs in the circuit,
composed of gates from Ω2n+N set, L∗(n) . 2n+1 is true.
J Let us show, that L∗(h) . 2n+1 for all h ∈ A(Zn2 ). Any h ∈ A(Zn2 )

permutation defines some Boolean transformation fh : Zn2 → Zn2 . It will be
represented in the following form:

fh(〈x1, . . . , xn〉) =

= ⊕
a1,...,ak∈Z2

xa11 ∧ . . . ∧ x
ak
k ∧ fh(〈a1, . . . , ak, xk+1, . . . , xn〉). (10)

The fh(〈a1, . . . , ak, xk+1, . . . , xn〉) transformation corresponds to some
Boolean transformation of n− k variables.

Let us construct a multi-terminal circuit, calculating all Boolean
functions of n − k variables. We will denote by ΩNXA a set of gates
{¬,⊕,∧} (NXA – NOT, XOR, AND). The ΩNXA set is the functionally
complete basis. It is known that no more than 22

n−k
gates from ΩNXA

set is required to construct the multi-terminal circuit described above.
All these gates can be represented as a composition of NOT, CNOT and
2-CNOT reversible gates. According to the figure below, no more than
two reversible gates and no more than one additional input are required.
Therefore, reversible sub-circuit defining described above multi-terminal
circuit has the size of L1 6 22

n−k+1 and it uses N1 = 22
n−k
− (n − k)

additional inputs. Every output that corresponds to one of the additional
inputs is an output of the n− k variable Boolean functions.

Representing functional elements from ΩNXA basis as a composition of NOT, CNOT
and 2-CNOT reversible gates

Before calculating all possible values of xa11 ∧. . .∧x
ak
k we will calculate

all x̄i, 1 6 i 6 k inversions with reversible gates. To do this L2 = 2k NOT
and CNOT gates and N2 = k additional inputs are needed. Then we
calculate all possible values of xa11 ∧ . . . ∧ x

ak
k by induction: for one input,

for two etc. To do this L3 =
k−1∑

i=1

2i+1 = 2k+1 − 4 2-CNOT gates and

N3 = L3 additional inputs are needed.
Then we construct a sub-circuit to calculate fh transform. For each

vector 〈a1, . . . , ak〉 L4 = n 2-CNOT gates are needed to define a conjunction

78 ISSN 0236-3933. HERALD of the BMSTU. Series “Instrument Engineering”. 2015. No. 1



with fh(〈a1, . . . , ak, xk+1, . . . , xn〉) transformation outputs, where values
are to be taken from the outputs of multi-terminal circuit. XOR gate from
formula (10) is implemented by 2-CNOT gate, so at this stage N4 = n
additional inputs are needed. The values of the outputs that correspond to
these additional inputs are outputs of fh transform.

Now it is possible to estimate L∗(h) value: L∗ (h) 6 L1 + L2 + L3 +
+2kL4; L∗(h) 6 22

n−k+1+2k+2k+1+n2k = 22
n−k+1+2k+2k(n+2). Also

we estimate a number of the required additional inputs: N = N1 + N2 +
+N3+N4; N = 2

2n−k−(n−k)+k+2k+1−4+n = 22
n−k
+2k+2k+1−4.

In work [3] it was stated, that: n− k = log2(n− log2 n)

L∗(h) ≤
2n+1

n
+ 2(n− log2(n− log2 n)) +

(n+ 2)2n+1

n− log2 n
. 2n+1;

N =
2n

n
+ 2(n− log2(n− log2 n)) +

2n+2

n− log2 n
− 4 ∼

5 ∙ 2n

n
. I

The conclusion can be drawn about dependency of circuit-size complexi-
ty on the number of additional inputs, relying on theorem 4.

Statement 1. For almost all permutations h ∈ A(Zn2 ) usage of
additional inputs allows reducing their circuit-size complexity.
J Based on theorems 3 and 4. I
Conclusion. When synthesizing a reversible circuit, implementing

some even permutation, it is necessary to find a compromise between
circuit-size complexity and number of additional inputs in the circuit.

In this paper several asymptotic bounds of reversible circuits composed
of NOT, CNOT and 2-CNOT gates have been proved. It was stated that
among all minimal reversible circuits without the usage of additional inputs
maximal circuit-size complexity is equivalent to the accuracy up to an
order of n2n/ log2 n. At the same time ∼5 ∙ 2n/n additional inputs allow
to construct a reversible circuit, implementing the given even permutation
with . 2n+1 circuit-size complexity.

Further investigations focuse on the dependency of the reversible
circuits compexity composed of NOT, CNOT and 2-CNOT gates from the
number of additional inputs being used in the scheme.
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