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One of the key features of the resonators of wave solid-state gyros is their quality
factor defining in many respects the instrument’s systematic and random errors. To
enhance the resonator quality, it is necessary to take into consideration peculiar
properties of different dissipative processes in design process. The contribution of
these processes depends on the resonator material behaviour, its design, its surface
processing quality, vacuum level in the instrument. Thermoelastic internal friction is
a fundamental dissipative process. The influence of internal thermoelastic friction on
the characteristics of resonators made of various materials is revealed by means of a
thermoelastic processes model and finite-element simulation. It is shown that internal
thermoelastic friction in quartz glass is very small as compared to other structural
materials. It permits to recommend quartz glass as a main structural material for
wave solid-state gyroscope resonators.
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In the last decade, vibratory giroscopes have become widespread, their
operation based on Сoriolis effect. The centerpieces of these instruments are
mechanical resonators of various design — frame, ring, hemispherical, etc.
[1, 2]. One of the main features of these resonators is their quality factor,
which to a large degree determines the instrument’s systematic and random
errors [2]. To enhance the quality factor, materials with small thermoelastic
internal friction are usually selected as structural materials: quartz glass,
silicon, metals, synthetic sapphire, etc. To achieve the best results in the
resonator design, one should take into consideration specific features of all
dissipative processes. It will be recalled that the internal friction in a solid
body is the whole set of all irreversible thermodynamic processes resulting
in energy dissipation of resonator’s elastic vibrations. The value of internal
friction is proportional to the ratio of energy dissipated for one period of
vibrations (ΔW ), to the total resonator’s energy (W ):

ς = ΔW/(2πW ), (1)

here the resonator’s quality factor is Q = ς−1.
As the internal friction in the resonator is determined with the sum of

all dissipative processes, then

ς = ςT + ςV + ςS + ςG + . . . , (2)
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where ςT — thermoelastic internal friction; ςV — internal friction in the
material structure; ςS — losses in the surface layer of the material; ςG — gas
friction.

Contributions of these separate processes (their list is unbounded (2))
are different and depend on the properties of the resonator material, its
design, the quality of its surface processing, the vacuum level in the
instrument. The internal friction in a solid body and in its surface layer as
well as gas friction are thoroughly discussed in [3–5]. The thermoelastic
internal friction, depending on the properties of the material and design,
can either be negligibly small or fully limit the resonator’s quality
factor. The detailed calculation of thermoelastic losses permits to assess
accurately enough the potential possibilities of the vibratory gyroscope
design. In special literature there are examples of these calculations made
for micromechanical instruments [6–8]. In wave solid-state gyroscopes
(WSG), axisymmetric thin-walled shells are used as resonators and the
thermoelastic losses in their material can also be significant. The objective
of the present paper is to consider the influence of thermoelastic internal
friction on the characteristics of WSG resonators made of various materials.

Simulation of thermoelastic internal friction in a resonator. Physics
of thermoelastic internal friction was first revealed by Zener [9] who
associated it with the onset of heat flows under deformation of a solid
body. In resonator’s vibrations, the deformations of its parts are opposite
in sign, i.e. in some places the material expands and in other places it
contracts. The body volume change under deformation requires that some
work A should be done, which can be expressed through thermal expansion
coefficient (α) and modulus of elasticity (Е) [10] as follows:

A = 9α2TEV, (3)

where Т — body temperature; V — molar volume of the substance.
It follows from (3) that when a solid body is under deformation (if

α 6= 0), the temperature in different parts of the body will depend on
deformation. In its turn, the inequality of these temperatures will result in
the onset of local heat flows increasing the oscillator’s entropy, which is
equivalent to the irreversible transformation of mechanical energy into heat
energy. To assess the thermoelastic losses quantitatively, Zener suggested
simple formulas that provide good enough complience with the experiment
in relation to a range of metals within the bounds of his phenomenological
model of internal friction in a solid body.

In the present paper, to determine thermoelastic losses, the finite-
element simulation of thermoelastic damping according to the second mode
shape in a cylindrical resonator was used (Fig. 1, b, c).

ISSN 0236-3933. HERALD of the BMSTU. Series Instrument Engineering. 2015. No. 2 29



Fig. 1. Design drawing of WSG resonator (а), finite-element approximation of
geometry (b) and its deformation according to the second mode shape (c)

This structure (as well as the simulated mode shape) is of a certain
practical interest because it is used in a number of modern developments
[11, 12]. The temperature field along the circular angle, heat flows and the
loss of resonator’s enegry for one period were calculated for a specified
deformation of the cylidrical shells subject to the properties of its material.
The characteristics of materials used in simulation are given in the table
below. The geometry of WSG resonator are given in Fig. 1, а.

The thickness of the resonator working area b and the central radius of
the working area R exert the main influence upon the change of resonator’s
characteristic features. The other dimensions do not exert significant
influence upon the result. In simulating, b takes on values 0.5, 1.0, 1.5, 2.0
and 2.5 mm, while R changes in a wide range.

The finite-element formulation of the task is based on the approximate
method of solving interconnected tasks of the dynamic theory of elasticity
and nonpermanent thermal conductivity [13]. According to the theory of
thermoelasticity, the connection between vectors of stresses and deforma-
tions is set in the form

σ = Dε = D(εEl − εT ), (4)

where εEl, εT — tensors of elastic and temperature deformations; σ — stress
tensor; D — 6×6 elastic constant tensor.
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Physical parameters of materials

Material parameters Material

Aluminum
(Д16Т)

Steel
(12Х18Н10Т)

Silicon (Si) Sapphire
(Al2O3)

Quartz
(SiO2)

Density, ρ, kg/m3 2800 7900 2320 3980 2220

Poisson’s ratio, ν 0.33 0.30 0.28 0.25 0.18

Young’s modulus, E, Па 7.08∙1010 1.98∙1011 1.30∙1011 4.40∙1011 7.20∙1010

Heat expansion rate, α,
1/◦C

2.30∙10−5 1.66∙10−5 4.20∙10−6 6.60∙10−6 6.00∙10−7

Specific heat, Cp,
J/kg ∙◦C

922 462 1414 790 728

Volumetric heat capacity,
СV , J/m3∙ ◦C

2.58∙10−6 3,65∙10−6 3.28∙10−6 3.14∙10−6 1.62∙10−6

Heat conductivity
coefficient, k, W/(m ∙ ◦C)

237 15 150 40 1,35

Stress tensors and deformation tensors consist of x, y and z normal
components and x–y, y–z и z–x tangent components.

The equations of elastic medium motion are obtained if the force of
internal stresses ∇ ∙ σ is equated to the product of acceleration and mass
of a solid body volume unit (i.e. its density) ρü. The vector form of the
motion equation is

ρ
∂2u

∂t2
= ∇ ∙ σ. (5)

Here ρ — volume density; u — displacement vector.
Equations (4) and (5) form a total system of differential equations

in partial derivatives for stresses and deformations. Boundary conditions
should be added to (4) и (5), but we will not dwell on them.

The connection of deformation with temperature is set using thermodynaics
laws. The equation of thermal conductivity at a small thermal disturbance
(i.e. with (T − T0)/T0 � 1) can be written as

CV
∂T

∂t
−∇(k∇T ) = q̇, (6)

where CV = ρCp — volumetric heat capacity; Cp — specific heat; k(χ) —
heat conductivity coefficient; q̇ — heat source, namely, heat generation rate
in the unit of volume.

In case of thermoelastic heating, the heat source for an isotropic material
is determined as follows:

q̇ = −
EαT0

(1− 2ν)
∂e

∂t
, (7)
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where E — Young’s modulus; α — heat conductivity coefficient; T0 —
temperature of the environment (initial temperature); е — expansion
deformation; ν — Poisson’s ratio.

For e, the following relation is true

e = εx + εy + εz = ∇ ∙ u. (8)

Let us try to look gor a solution of equation for ΔT and U in the form

ΔT = T − T0 = eλtΘ,
u = eλtU,
v = u̇ = eλtV,

(9)

where λ = iω + δ.
It should be noted that Θ, U, V depend on coordinates and the number

of vibrations tone n only. In simulating, only the second mode shape was
considered (Fig. 1, c).

Using Galerkin’s standard scheme/pattern for the finite element method
[14] we obtain from (6)–(8) a matrix equiation for temperature Θ and
displacements U in mesh points:

(K+ λH)Θ + λFU = 0; (10)

here K, H, F — matrices whose elements are composed from shape
functions N with number of mesh points m.

The axisymmetric resonator’s geometry assumes the transition to
cylindrical coordinates r, θ, z. Then (6) will take on the form

ρCP
∂T

∂t
− k

(
∂2T

∂r2
+
1

r

∂T

∂r
+
1

r2
∂2T

∂θ2
+
∂2T

∂z2

)

= −
EαT0

(1− 2ν)
∂e

∂t
,

while for element matrices from (10) the following relations are true:

Ke =

∫

Ω

k

(
∂N

∂r

∂NT

∂r
+
∂N

∂z

∂NT

∂z
+
n2

r2
NNT

)

drdz,

He =

∫

Ω

CVNN
Tdrdz,

F = [F1 . . . Fm] ,

Fi =
EαT0

1− 2ν
N











∂Ni
∂r
+
Ni
r
−
nNi
2r
+
1

2

∂Ni
∂z

nNi
r
+
1

2

(
∂Ni
∂r
−
Ni
r

)

+
1

2

∂Ni
∂z

∂Ni
∂z
−
nNi
2r
+
1

2

∂Ni
∂z











T

, (i = 1, . . . ,m).
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Equation of motion (5) when using (4), (8) in matrix form

σ = Cε−DT,

ε = BU,

Can be transformed into the following form:

LU−GΘ+ λMV = 0. (11)

Here L, G, M — element matrices, and V — vector of rate values at
mesh points.

Elements of matrices in (8)–(11) are calculated in the following way:

Le =

∫

Ω

BTCB dr dz, Ge =

∫

Ω

BTDB dr dz, Me =

∫

Ω

ρNNT dr dz.

Matrices C, D, B depend on physical properties of the material and
the form of interpolation functions

C =
E

(1 + ν)(1− 2ν)











1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1/2− ν 0 0
0 0 0 0 1/2− ν 0
0 0 0 0 0 1/2− ν











,

D =
Eα

(1− 2ν)
[1 1 1 0 0 0]T ,

B = [B1 . . . Bm] ,

Bi =























∂Ni
∂r

0 0

Ni
r

nNi
r

0

0 0
∂Ni
∂z

−
nNi

2r

1

2

(
∂Ni
∂r
−
Ni
r

)

0

0
1

2

∂Ni
∂z

nNi
2r

1

2

∂Ni
∂z

0
1

2

∂Ni
∂r























, (i = 1, . . . ,m).
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Basing on the fact that the connection between displacements and the
rates at mesh points is set by relation [13]

V = λU, (12)

and also using (10) and (11), we obtain the equation for the calculation of
λ eigenvalues




−K 0 0
G −L 0
0 0 I








Θ
U
V



 = λ




H F 0
0 0 M
0 I 0








Θ
U
V



 , (13)

where I is a unit matrix.
The eigenvalue is complex value λ = δ+ jω that explicitly determines

resonance vibration frequency ω and damping coefficient δ.
Let us write the relation for obtaining resonator’s quality factor Q on

resonance frequency f in the following form:

Q =
Im(λ)
2Re (λ)

, δ = Re(λ), f =

∣
∣
∣
∣

Im(λ)
2π

∣
∣
∣
∣ . (14)

In addition, to every λn eigenvalue, there corresponds its own harmonic
field of a heat flow, displacements, stresses and deformations. As the
intensities of heat flows depend on both the thickness of resonator’s wall
(b), and vibration frequency (f ), the results of the calculation for various
structural materials are shown in Fig. 2, 3 in the form of dependencies
Q(f, b). Here, it was supposed that Q = ς−1T , while the intensities of all
other dissipative processes mentioned in (2), were equal to zero.

Results and discussion. In Fig. 2 the data is shown on the quality
factors of metal resonators made of duraluminium Д16Т and corrosion-
resistant steel. As one can see in the picture, the quality factor of thin-walled
(less than 1 mm) and low-frequency (less than 1 kHz) metal resonators is
always small (about 1000) because of high intensity of the thermoelastic
internal friction, which is also a dominating dissipative process. To get the
quality factor (4 . . . 5) ∙ 104, the wall thickness should be taken equal to
not less than 1 . . . 1.5mm, while the working frequency should be not less
than 4. . . 5 kHz.

Rather small values of resonators’ quality factor can be received
using silicon and sapphire as structural materials (Fig. 3). At the vibration
frequency up to 10 kHz of these resonators, thermoelastic losses will limit
their quality factor on the level 106. In contrast to these materials, quartz
glass has a low level of thermoelastic internal friction. At the vibration
frequency about 1 kHz, even for wall thickness 0.5 mm, the quality factor
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Fig. 2. Dependence of quality factor Q on frequency f at fixed resonator’s wall
thicknesses for duraluminium Д16Т and corrosion-resistant steel 36НХТЮ; wall
thickness b:
1 — 0.5 mm, 2 — 1.0 mm, 3 — 1.5 mm, 4 — 2.0 mm, 5 — 2.5 mm

Fig. 3. Dependence of quality factor Q on frequency f at fixed resonator’s wall
thicknesses for silicon, sapphire and quartz; wall thickness b:
1 — 0.5 mm, 2 — 1.0 mm, 3 — 1.5 mm, 4 — 2.0 mm, 5 — 2.5 mm
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is limited with value 107. At higher vibration frequencies, this type of
internal friction in quartz glass can be neglected.

Conclusion. Thermoelastic internal friction is a fundamental dissipative
process whose intensisty in thin-walled mechanical resonators can be high.
In kHz range of frequences, with WSG resonator wall thicknesses equal
to 0.5. . . 1.0 mm, this type of internal friction limits the quality factor of
resonators made of corrosion-resistant steel and aluminium alloys on the
level of some tens of thousands, while the quality factor of resonators made
of silicon and sapphire is limited on the level of 105. In quartz glass, the
thermoelastic internal friction is very small, which permits to recommend
it as the basic structural material for WSG resonators.
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