|

Classification of Weld Defects Based on Convolution Neural Network

Авторы: Gavrilov A.I., Do M.Tr. Опубликовано: 02.07.2021
Опубликовано в выпуске: #2(135)/2021  
DOI: 10.18698/0236-3933-2021-2-23-36

 
Раздел: Информатика, вычислительная техника и управление | Рубрика: Математическое и программное обеспечение вычислительных систем, комплексов и компьютерных сетей  
Ключевые слова: welding defect classification, convolution neural network

Automatic welding technology has been widely applied in many industrial fields. It is a complex process with many nonlinear parameters and noise factors affecting weld quality. Therefore, it is necessary to inspect and evaluate the quality of the weld seam during welding process. However, in practice there are many types of welding seam defects, causes and the method of corrections are also different. Therefore, welding seam defects need to be classified to determine the optimal solution for the control process with the best quality. Previously, the welder used his experience to classify visually, or some studies proposed visual classification with image processing algorithms and machine learning. However, it requires a lot of time and accuracy is not high. The paper proposes a convolutional neural network structure to classify images of welding seam defects from automatic welding machines on pipes. Based on comparison with the classification results of some deep machine learning networks such as VGG16, Alexnet, Resnet-50, it shows that the classification accuracy is 99.46 %. Experimental results show that the structure of convolutional neural network is proposed to classify images of weld seam defects have availability and applicability

Литература

[1] Cary H.B., Helzer S.C. Modern welding technology. New Jersey, Pearson, 2005.

[2] Primo J. Welding inspection qualifications and testing procedures. PD Honline Course M415 (8PDH). PHD Center, 2012.

[3] Petcher P.A., Dixon S. Weld defect detection using PPM EMAT generated shear horizontal ultrasound. NDT E Int., 2015, vol. 74, pp. 58--65. DOI: https://doi.org/10.1016/j.ndteint.2015.05.005

[4] Zou Y.R., Du D., Chang B.H., et al. Automatic weld defect detection method based on Kalman filtering for real-time radiographic inspection of spiral pipe. NDT E Int., 2015, vol. 72, pp. 1--9. DOI: https://doi.org/10.1016/j.ndteint.2015.01.002

[5] Dziczkowski L. Elimination of coil lift off from eddy current measurements of conductivity. IEEE Trans. Instrum. Meas, 2013, vol. 62, no. 12, pp. 3301--3307. DOI: https://doi.org/10.1109/TIM.2013.2272842

[6] Kumar G.S., Natarajan U., Ananthan S.S. Vision inspection system for the identification and classification of defects in MIG welding joints. Int. J. Adv. Manuf. Technol., 2011, vol. 61, no. 9-12, pp. 923--933. DOI: https://doi.org/10.1007/s00170-011-3770-z

[7] Yan W., Yi S., Peng L., et al. Detection of line weld defects based on multiple thresholds and support vector machine. NDT E Int., 2008, vol. 41, no. 7, pp. 517--524. DOI: https://doi.org/10.1016/j.ndteint.2008.05.004

[8] Valavanis I., Kosmopoulos D. Multiclass defect detection and classification in weld radiographic images using geometric and texture features. Expert Syst. Appl., 2010, vol. 37, no. 12, pp. 7606--7614. DOI: https://doi.org/10.1016/j.eswa.2010.04.082

[9] Boaretto N., Centeno T.M. Automated detection of welding defects in pipelines from radiographic images DWDI. NDT E Int., 2017, vol. 86, pp. 7--13. DOI: https://doi.org/10.1016/j.ndteint.2016.11.003

[10] Zapata J., Vilar R., Ramon R. Performance evaluation of an automatic inspection system of weld defects in radiographic images based on neuro-classifiers. Expert Syst. Appl., 2011, vol. 38, no. 7, pp. 8812--8824. DOI: https://doi.org/10.1016/j.eswa.2011.01.092

[11] Jiang H., Zhao Y., Gao J., et al. Weld defect classification based on texture features and principal component analysis. Insight Destruct. Test. Cond. Monit., 2016, vol. 58, no. 4, pp. 194--200. DOI: https://doi.org/10.1784/insi.2016.58.4.194

[12] Krizhevsky A., Sutskever I., Hinton G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inform. Proc. Syst., 2012, vol. 25, pp. 1097--1105.

[13] Lecun Y., Bengio Y., Hinton G.E. Deep learning. Nature, 2015, no. 521, pp. 436--444.

[14] Sizyakin R.A., Voronin V., Gapon N., et al. Automatic detection of welding defects using the convolutional neural network. Proc. SPIE, 2019, no. 11061. DOI: https://doi.org/10.1117/12.2525643

[15] Zhu H., Ge W., Liu Z. Deep learning-based classification of weld surface defects. Appl. Sc., 2019, vol. 9, no. 16, art. 3312. DOI: https://doi.org/10.3390/app9163312

[16] Hou W., Wei Y., Guo J., et al. Automatic detection of welding defects using deep neural network. J. Phys.: Conf. Ser., 2017, vol. 933, no. 012006. DOI: https://doi.org/10.1088/1742-6596/933/1/012006

[17] Riffo V., Lobel H., Mery D. GDXray: the database of X-ray images for nonde-structive testing. J. Nondestruct. Eval., 2015, vol. 34, no. 4, art. 42. DOI: https://doi.org/10.1007/s10921-015-0315-7

[18] Hou W., Wei Y., Jin Y., et al. Deep features based on a DCNN model for classifying imbalanced weld flaw types. Measurement, 2019, vol. 131, pp. 482--489. DOI: https://doi.org/10.1016/j.measurement.2018.09.011

[19] Yang N., Niu H., Chen L., et al. X-ray weld image classification using improved convolutional neural network. AIP Conf. Proc., 2018, vol. 1995, no. 020035. DOI: https://doi.org/10.1063/1.5048766

[20] Liu B., Zhang X., Gao Z., et al. Weld defect images classification with VGG16-based neural network. In: Digital TV and Wireless Multimedia Communication. Springer, 2018, pp. 215--223.

[21] Golodov V.A., Mittseva A.A. Weld segmentation and defect detection in radio-graphic images of pipe welds. Proc. RusAutoCon, 2019. DOI: https://doi.org/10.1109/RUSAUTOCON.2019.8867734

[22] Khumaidi A., Yuniarno E.M., Purnomo M.H. Welding defect classification based on convolution neural network (CNN) and Gaussian kernel. Proc. ISITIA, 2017. DOI: https://doi.org/10.1109/ISITIA.2017.8124091