|

Алгоритмы распознавания клеток крови

Авторы: Шахтарин Б.И., Панов С.А., Калашников К.С. Опубликовано: 03.09.2015
Опубликовано в выпуске: #4(103)/2015  
DOI: 10.18698/0236-3933-2015-4-49-65

 
Раздел: Приборостроение, метрология и информационно-измерительные приборы и системы | Рубрика: Приборы и методы контроля природной среды, веществ, материалов и изделий  
Ключевые слова: анализ мазков крови, автоматизированная микроскопия, обнаружение клеток крови, машинное зрение

Рассмотрена структура системы анализа медицинских изображений. Приведены принципиальная схема установки для проведения автоматизированных микроскопических исследований мазков крови, а также алгоритм работы системы распознавания клеток крови. Сформулированы основные задачи, решаемые при проведении морфологического анализа крови. Определены требования к алгоритму при определении лейкоцитарной формулы и обнаружении форменных элементов крови на мазке. Предложена модель цветояркостных характеристик для описания типичных изображений мазка крови. Определены пороговые значения размеров объектов при поиске клеток. Исследована гистограмма яркости типичного поля зрения. Описан двухэтапный алгоритм обнаружения клеток крови, а также алгоритм построения разделяющей прямой на плоскости относительных цветов. Приведены результаты экспериментов на реальных препаратах. Рассмотрены причины возникновения ошибок обнаружения.

Литература

[1] Соколинский Б.З., Демьянов В.Л., Медовый В.С., Парпара А.А., Пятницкий А.М. Автоматическая сортировка лейкоцитов мазка крови с использованием методов обучаемых нейронных сетей и watershed // Здравоохранение и медицинская техника. 2005. № 4.

[2] Национальное руководство по лабораторной диагностике. Т. 1,2 / под ред. В.В. Долгова, В.В. Меньшикова.

[3] Обзор методик автоматизированной микроскопии биоматериалов / В.С. Медовый, А.А. Парпара, А.М. Пятницкий, Б.З. Соколинский, В.Л. Демьянов // Клиническая лабораторная диагностика 2006. № 7. С. 15-20.

[4] Medovyi V.S., Pyatnitskii A.M. Robotic Microscopy and information technology to increase accuracy, sensitivity and availability of blood cell analyses. Current microscopy contributions to advances in science and technology (Microscopy Book Series, Publisher: Formatex Research Center). Book 5. Vol. 1. P. 775-781, December 2012.

[5] Albertini Maria C., Teodori Laura, Piatti Elena, Piacentini Maria P., Accorsi Augusto, Rocchi Marco B.L. Automated analysis of morphometric parameters for accurate definition of erythrocyte cell shape Cytometry. Part A. 52A:12-18, 2003.

[6] Прэтт У. Цифровая обработка изображений: Пер. с англ. М.: Мир, 1982. Кн. 1. 312 с.

[7] Пантелеев И., Егорова О., Клыкова Е. Компьютерная микроскопия. Техносфера, Москва, 2005.

[8] Bikhet S.F., Darwish A.M., Tolba H.A., Shaheen S.I. Segmentation and classification of white blood cells. Acoustics, Speech, and Signal Processing, 2000. ICASSP’00. Proceedings. 2000. IEEE International Conference on Volume 6, 2000. Vol. 4. P. 2259-2261.

[9] Jiang K., Liao Q., Dai S. A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering. Proc. Of the Second Intern. Conf. on Machine Learning and Cybernetics. Xi’an, 2-5 November 2003.

[10] Анисимов Б.В., Курганов В.Д., Злобин В.К. Распознавание и цифровая обработка изображений. М.: Высш. шк., 1983. 295 с.