|

On the Solution to the Problem of Guiding an Illumination-Providing Satellite Towards the Specified Earth‘s Surface Region, and Estimation of Illumination Intensity

Authors: Sumarokov A.V., Timakov S.N., Bogdanov K.A. Published: 29.11.2017
Published in issue: #6(117)/2017  
DOI: 10.18698/0236-3933-2017-6-115-129

 
Category: Aviation, Rocket and Space Engineering | Chapter: Dynamics, Ballistics, Flying Vehicle Motion Control  
Keywords: solar sail spacecraft, illumination providing satellite, space tests, guidance

The article considers a spacecraft featuring a large solar sail, intended for illuminating subpolar regions of the Earth's surface during a polar night with sunlight reflected from the mirror-like surface of the sail. In order to perform this, when the craft reaches the orbital segment located above the horizon of the region to be illuminated, the sail is aligned so that it reflects the sunlight towards the region. If necessary, seve-ral craft of this type are able to ensure continuous illumination of the specified region. We analysed the angular velocities and sail alignment angles required to ensure continuous illumination of the target and suggested an algorithm for computing these parameters. Additionally, we estimated the illumination intensity and the number of craft required. To verify the algorithm developed, we performed simulations for two cases: when the Sun is at a 40° angle to the orbital plane, and when the orbital plane is perpendicular to the direction towards the Sun

References

[1] Egorov M.A., Egorov V.A., Sazonov V.V. Control on orbit elements of lighter satellite. Kosmicheskie issledovaniya, 1995, vol. 33, no. 2, pp. 220–224 (in Russ.).

[2] Bogdanov K.A., Zykov A.V., Legostaev V.P. et al. Zadachi upravleniya dvizheniem kosmicheskogo apparata s vrashchayushchimsya solnechnym parusom [Motion control problems of spacecraft with rotating solar sail]. Korolev, RKK "Energiya" Publ., 2016. 116 p.

[3] Legostaev V.P., Subbotin A.V., Zykov A.V., Sumarokov A.V., Timakov S.N. The dynamics of a rotating solar sail when it is deployed. Journal of Applied Mathematics and Mechanics, 2015, vol. 79, no. 1, pp. 35–43. DOI: 10.1016/j.jappmathmech.2015.04.016 Available at: http://www.sciencedirect.com/science/article/pii/S0021892815000519

[4] Sumarokov A.V. [High-resolution camera pointing in process of Earth surface video recording from ISS]. Navigatsiya i upravlenie dvizheniem: Materialy XVII konf. molodykh uchenykh [Navigation and control: Proc. XVII Conf. of Youyng scientists]. Sankt-Petersburg, Kontsern "TsNII "Elektropribor" Publ., 2015. Pp. 561–568 (in Russ.).

[5] Sumarokov A.V. On pointing of high resolution camera mounted on the international space station using biaxial rotating platform. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2016, no. 4, pp. 85–97 (in Russ.). DOI: 10.18698/0236-3933-2016-4-85-97

[6] Branets V.I., Shmyglevskiy I.P. Vvedenie v teoriyu besplatformennykh inertsialnykh navigatsionnykh sistem [Introduction to the theory of strap down inertial navigation system]. Moscow, Nauka Publ., 1992. 280 p.

[7] RD 50-25645.325–89. Sputniki Zemli iskusstvennye. Osnovnye sistemy koordinat dlya ballisticheskogo obespecheniya poletov i metodika rascheta zvezdnogo vremeni [RD 50-25645.325–89. Earth artificial satellites. Main coordinate systems for ballistic flight support and star time calculation method]. Moscow, Izdatelstvo standartov Publ., 1990. 19 p.

[8] Elyasberg P.E. Vvedenie v teoriyu poleta iskusstvennykh sputnikov Zemli [Introduction to the flight theory of Earth artificial satellites]. Moscow, Nauka Publ., 1965. 540 p.

[9] GOST R 51794–2001. Apparatura radionavigatsionnaya globalnoy navigatsionnoy sputnikovoy sistemy i globalnoy sistemy pozitsionirovaniya. Sistemy koordinat. Metody preobrazovaniy koordinat opredelyaemykh tochek [GOST R 51794–2001. Radionavigational equipment of global navigation satellite system and global position system. Coordinate systems. Methods of transformations for determinated points coordinates]. Moscow, Izdatelstvo standartov Publ., 2001. 10 p.

[10] Branets V.N., Platonov V.N., Sumarokov A.V., Timakov S.N. Stabilization of a wheels carrying communication satellite without angle and angular velocity sensors. Journal of Computer and Systems Sciences International, 2008, vol. 47, no. 1, pp. 118–128. DOI: 10.1134/S1064230708010152 Available at: https://link.springer.com/article/10.1134/S1064230708010152

[11] Sumarokov A.V., Timakov S.N. On an adaptive control system for angular motion of a communication satellite. Journal of Computer and Systems Sciences International, 2008, vol. 47, no. 5, pp. 795–805. DOI: 10.1134/S1064230708050134 Available at: https://link.springer.com/article/10.1134/S1064230708050134

[12] Efimov D.A., Sumarokov A.V., Timakov S.N. On the stabilization of a communication satellite without measuring its angular velocity. Journal of Computer and Systems Sciences International, 2012, vol. 51, no. 5, pp. 732–741. DOI: 10.1134/S106423071204003X Available at: https://link.springer.com/article/10.1134/S106423071204003X