|

Problem solution of averaging orbital motion parameters of the International space station during conducting the space experiment Global Transmission Services 2

Authors: Mikrin E.A., Sumarokov A.V., Zubov N.E., Ryabchenko V.N. Published: 12.10.2015
Published in issue: #5(104)/2015  
DOI: 10.18698/0236-3933-2015-5-3-17

 
Category: Aviation, Rocket and Space Engineering | Chapter: Dynamics, Ballistics, Flying Vehicle Motion Control  
Keywords: International space station, space experiments, Global Transmission Services, state vector, orbital motion, dynamic filtration

The paper considers the algorithm of averaging the International space station orbital parameters. The algorithm is implemented during conducting the space experiment Global Transmission Services 2 together with the European space agency. The obtained data are averaged in the algorithm using the method of dynamic filtration, which is based on the analytically synthesized observer monitoring the state of orbital parameters. Then the averaged data are transformed into the defined format. The results of the numerical simulation of the International space station motion, which were obtained at the ground test rig, are presented. These results correspond to the data obtained during the flight tests and prove a functional efficiency of the proposed algorithm.

References

[1] Global Transmission Services 2 (GTS-2). URL: http://www.nasa.gov/mission_pages/station/research/experiments/287.html (accessed 22.10.2014).

[2] Sumarokov A.V. About Averaging of ISS Orbital Parameters During Implementation of Space Experiment GTS2. Navigatsiya i upravlenie dvizheniem. Materialy XVI konf molodykh uchenykh [Navigation and Motion Controll. Proc. of the XVI Young Scientist Conference], 2014. pp. 334-341 (in Russ.).

[3] Hoots Felix R., Roehrich Ronald L. Spacetrack Report No. 3. Models for Propagation of NORAD Element Sets. Aerospace Defense Center, Peterson Air Force Base, 1980. 91 p.

[4] Abalkin V.K., Aksenov E.P., Grebennikov E.A., Demin V.G., et al. Spravochnoe rukovodstvo po nebesnoy mekhanike i astrodinamike [Reference Manual on Celestial Mechanics and Astrodynamics]. Moscow, Nauka Publ., 1976. 864 p.

[5] Ohocimskiy D.E., Sikharulidze Y.G. Osnovy mekhaniki kosmicheskogo poleta [Foundation of Space Flight Mechanics: Tutoral]. Moscow, Nauka Publ., 1990. 448 p.

[6] Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Oleinik A.S., Ryabchenko V.N. Terminal Bang-Bang Impulsive Control of Linear Time Invariant Dynamic Systems. J. Comput. Syst. Sci. Int., 2014, vol. 53, pp. 480-490.

[7] Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Ryabchenko V.N., Timakov S.N., Cheremnykh E.A. Identification of the Position of an Equilibrium Attitude of the International Space Station as a Problem of Stable Matrix Completion. J. Comput. Syst. Sci. Int., 2012, vol. 51, pp. 291-305.

[8] Zubov N.E., Mikrin E.A., Ryabchenko V.N., et al. The Use of an Adaptive Bandpass Filter as an Observer in the Control Loop of the International Space Station. J. Comput. Syst. Sci. Int., 2012, vol. 51, pp. 560-572.

[9] Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Ryabchenko V.N., Timakov S.N. The Use of the Exact Pole Placement Algorithm for the Control of Spacecraft Motion. J. Comput. Syst. Sci. Int., 2013, vol. 52, pp. 129-144.

[10] Zubov N.E., Vorob’eva E.A., Mikrin E.A., Misrikhanov M.Sh., Ryabchenko V.N., Timakov S.N. Synthesis of Stabilizing Spacecraft Control Based on Generalized Ackermann’s Formula. J. Comput. Syst. Sci. Int., 2011, vol. 50, pp. 93-103.

[11] Bogachev A.V., Vorob’eva E.A., Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Ryabchenko V.N., Timakov S.N. Unloading Angular Momentum for Inertial Actuators of a Spacecraft in the Pitch Channe. J. Comput. Syst. Sci. Int., 2011, vol. 50, pp. 483-490.

[12] Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Ryabchenko V.N. Synthesis of Decoupling Laws for Attitude Stabilization of a Spacecraft. J. Comput. Syst. Sci. Int., 2012, vol. 51, pp. 80-96.

[13] Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Ryabchenko V.N. Modification the Exact Pole Placement Method and Its Application for the Control of Spacecraft Motion. J. Comput. Syst. Sci. Int., 2013, vol. 52, pp. 279-292.

[14] Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Ryabchenko V.N. Synthesis of Controls for a Spacecraft That Optimize the Pole Placement of the Closed Loop Control System. J. Comput. Syst. Sci. Int., 2012, vol. 51, pp. 431-444.

[15] Zubov N.E., Mikrin E.A., Oleinik A.S., Ryabchenko V.N., Efanov D.E. The Spacecraft Angular Velocity Estimation in the Orbital Stabilization Mode by the Results of the Local Vertical Sensor Measurements. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2014, no. 5, pp. 3-15 (in Russ.).

[16] Beklemishev D.V. Dopolnitel’nye glavy lineynoy algebry [Complementary chapters of linear algebra]. Moscow, Nauka Publ., 1983. 336 p.