|

Accuracy Analysis and Optimization of a Receiving Channel of Onboard Laser Ranging System while Measuring Medium Distances to Space Objects

Authors: Starovoitov E.I., Zubov N.E. Published: 12.08.2016
Published in issue: #4(109)/2016  
DOI: 10.18698/0236-3933-2016-4-115-128

 
Category: Aviation, Rocket and Space Engineering | Chapter: Control and Testing of Aircrafts and their Systems  
Keywords: laser ranging system, space vehicle, rendezvous and docking, photodetector, accuracy, optimization

In this work we analyzed the factors that influence the accuracy of distance measurement and range rate of onboard laser ranging system using diffusely reflected signal from the body of a passive space object in the 0.5 to 5.0 km range of distances. We obtained the relation of the total measurement accuracy to distance, using the receiving channel of laser ranging system with the two types of photodetectors. Our results show that when applying an avalanche photodiode, the measurement accuracy is practically independent of the distance. By contrast, with application of pin-photodiode the accuracy drops sharply with the increase in distance, therefore it is advisable to conduct optimization of a receiving channel. We present the results of optimization for a receiving channel of onboard laser radar system using the method of finding the Pareto set and the generalized function of efficiency.

References

[1] Medvedev S.B., Sazonov V.V., Saygiraev Kh.U. Modeling of zones of unstable work of radiosystem with active response during reapproaching and joining spaceships with International spacestation. Matem. Mod., 2012, vol. 24, no. 2, pp. 151-160 (in Russ.).

[2] Ruel S., Luu T., Berube A. On-orbit testing of target-less TriDAR 3D rendezvous and docking sensor. The International Symposium on Artificial Intelligent, Robotics and Automation in Space (i-SAIRAS 2010). August 29 - September 1, 2010, Sapporo, Japan. Available at: http://robotics.estec.esa.int/i-SAIRAS/isairas2010/PAPERS/004-2775-p.pdf (accessed 26.07.15)

[3] English C., Okouneva G., Saint-Cyr P., Choudhuri A., Luu T. Real-time dynamic pose estimation systems in Space: Lessons learned for system design and performance evaluation. International Journal of Intelligent Control and Systems (IJICS), vol. 16, no. 2, 2011, pp. 79-96.

[4] Starovoitov E.I., Zubov N.E Applied questions of onboard laser radar equipment development. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2015, no. 9. DOI: 10.7463/0915.0811999 Available at: http://technomag.bmstu.ru/doc/811999.html

[5] Stavrov A.A., Pozdnyakov M.G. Pulse laser rangefinders for optic location systems. Dokl. Belorus. Gos. Univ. Inf. Radioelectron., 2003, vol. 1, no. 2, pp. 59-65 (in Russ.).

[6] Finkel’shteyn M.I. Osnovy radiolokatsii [Bases of Radiolocation]. Moscow, Radio i svyaz’ Publ., 1983, 536 p.

[7] Mel’nikov K.V. Optimization of a laser telemetric system photoreceiving module. Dokl. Belorus. Gos. Univ. Inf. Radioelectron., 2012, no. 7 (69), pp. 34-39 (in Russ.).

[8] Malashin M.S., Kaminskiy R.P., Borisov Yu.B. Osnovy proektirovaniya lazernykh lokatsionnykh sistem [Bases of designing of laser location systems]. Moscow, Vyssh. shk. Publ., 1983. 207 p.

[9] Aspis L.A., Vasil’ev V.P., Volkonskiy V.B. et al. Lazernaya dalnometriya [Laser ranging]. Moscow, Radio i svyaz’ Publ., 1995. 256 p.

[10] Kozintsev V.I., Belov M.L., Orlov V.M., Gorodnichev V.A., Strelkov B.V. Osnovy impul’snoy lazernoy lokatsii [The basics of pulsed laser ranging]. Moscow, MGTU im. N.E. Baumana Publ., 2010. 571 p.

[11] Starovoitov E.I., Zubov N.E., Ivashov V.V., Nikul’chin A.V. Study of efficiency and optimization parameters of laser device for measuring the range rate of spacecraft. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2014, no. 6. DOI: 10.7463/0614.0712240 Available at: http://technomag.bmstu.ru/doc/712240.html

[12] Starovoitov E.I. Bortovye lazernye lokatsionnye sistemy kosmicheskikh apparatov [Onboard laser ranging system of spacecrafts]. Korolev, S.P. Korolev RSC "Energia" Publ., 2015. 160 p.

[13] Zubov N.E., Savchuk D.V., Starovoitov E.I. Analysis the possibilities, optimization of mass and of power consumption for a laser altimeter controlling the descent of a spacecraft from the lunar orbit. Kosm. tekhn. i tekhnologii [Space Engineering and Technology], 2014, no. 1 (4), pp. 67-74 (in Russ.).

[14] Nogin V.D. Prinyatie resheniy v mnogokriterial’noy srede: kolichestvennyy podkhod [Decision-making in multicriteria environment: a quantitative approach]. Moscow, Fizmatlit Publ., 2004. 176 p.