|

Application of bulk high-temperature superconductors in advanced space systems

Authors: Matveev V.A. , Maevskiy V.A., Aseev V.V., Ivlev A.S., Sysoev M.A. Published: 19.02.2016
Published in issue: #1(106)/2016  
DOI: 10.18698/0236-3933-2016-1-15-32

 
Category: Aviation, Rocket and Space Engineering | Chapter: Innovation Technologies in Aerospace Activity  
Keywords: bulk high-temperature superconductor, permanent magnet, space object, cryovacuum system

The paper describes the overall activity progress in creating of devices based on high-temperature superconductors (HTSC). It presents the results of developing and testing two variants of non-contact bearings for high temperature disc-type superconductor rotating shafts. The most suitable conditions in terms of loads, vacuum and temperature for the HTSC units operations are provided in space objects. The authors consider capabilities and features of space object systems with superconductor-permanent magnet unit cells supporting passive contactless interconnections. Such cells can be used as frames in the kinetic energy storage devices, high-speed airborne electromechanical devices, rotary and linear motion tight feed throughs. The static systems providing both noncontact movement of space objects and fixation of their relative position (manipulators, reconfiguration of modular space objects, approach and docking systems, and modules of large space structures - radio telescopes, solar sails) are of special interest. Both an efficient transportation system for goods movement and an acceleration using magnetic levitation can be implemented. In all cases, it is sure to provide controllable coupling stiffness and the resource increase due to the lack of friction and shocks.

References

[1] Arkharov A.M. Osnovy kriologii [Fundamentals of Cryology]. Moscow, MGTU im. N.E. Baumana Publ., 2014.

[2] Walter H., Bock J., Frohne Ch., Schipp K., May H., Canders W.R., Kummeth P., Nick W., Neumueller H.-W. First Heavy Load Bearing for Industrial Application with Shaft Loads up to 10 kN. J. of Physics: Conference, 2006, ser. 43, pp. 995-998.

[3] Weinstein R., Sawh R., Park D. Trapped Field Magnets: Basic and Applications on LOW Ambient Temperature. 1st International Workshop on Lunar Superconductor Applications (LSA). Houston, March 3-5, 2011.

[4] Wei-Kan Ch. HTS Bulc Applications and Early Prototypes at TeSUH. 1st International Workshop on Lunar Superconductor Applications (LSA). Houston, March 3-5, 2011.

[5] Arkharov A.M., Smorodin A.I. Kriogennye sistemy [Cryogenic Systems]. Moscow, Mashinostroenie Publ., 1999.

[6] Matveev V.A., Gerdy V.N., Poluschenko O.L. Melt-processed single domain YBCO superconductors for bearing application. 6th International Workshop "High-temperature superconductors and novel inorganic materials engineering". Book of Abstracts. Moscow, 2001.

[7] Chen P.C., Lowman P.D., Rabin D.M. HTS and Moon Dust - Key Ingredients for Lunar, Science, Infrastructure, and Space Exploration. 1st International Workshop on Lunar Superconductor Applications (LSA). Houston, March 3-5, 2011.

[8] Filatov A.V., Matveev V.A. Calculation of magnetic suspension with short-circuited superconducting contours for cryogenic devices. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 1999, no. 1, pp. 49-59 (in Russ.).

[9] Polushchenko O.L., Matveev V.A., Nizhelskiy N.A. Magnetic Suspension with Disc Single-Domain High-Temperature Superconducting Elements on the Rotor. Izv. Vyssh. Uchebn. Zaved., Mashinostr. [Proc. Univ., Mech. Eng.], 2006, no. 2, pp. 15-22 (in Russ.).

[10] Nizhelskiy N.A., Poluschenko O.L., Matveev V.A. Employment of Gd-Ba-Cu-O elongated seeds in top-seeded melt-growth processing of Y-Ba-Cu-O superconductors. Supercond. Sci. Technol., 2007, vol. 20, pp. 81-86.

[11] Matveev V.A., Gerdy V.N., Nizhelskiy N.A., Poluschenko O.L. Prototip Disk-Type HTS Bearing. Phisiks Procedis, 2012, vol. 36.

[12] Arkharov A.M. Mashiny nizkotemperaturnoy tekhniki [Machines of Low-Temperature Technology]. Moscow, MGTU im. N.E. Baumana Publ., 2001.

[13] Polushchenko O.L., Nizhelskiy N.A., Matveev V.A., Maevskiy V.A., Sukharev M.M., Lykhin V.A. The Non-Contact Magnetic Bearings Using Bulk High-Temperature Superconducting Elements. Sb. Tr. III Mezhdunar. Konf. "Fundamental’nye problemy VTSP" [Proc. Int. Conf. Fundamental Problems of High-Temperature Superconductors], 2008 (in Russ.).

[14] Kovalev L.K., Kovalev K.L., Koneev M.A., Penkin V.T., Poltavets V.N. Elektromekhanicheskie preobrazovateli na osnove massivnykh vysokotemperaturnykh sverkhprovodnikov [The Electromechanical Transducers Based on Massive High-Temperature Superconductors]. Moscow, MAI-PRINT Publ., 2008. 440 p.

[15] Vysotskiy V.S., Sytnikov V.E., Ilyushin K.V., Kovalev L.K., Kovalev K.L. Superconductivity in Electromechanics and Electrical Engineering. Elektrichestvo [Electricity], 2005, no. 7 (in Russ.).

[16] Kovalev L.K., Konev S.M. Magnetic High-Temperature Superconducting Suspensions for Kinetic Energy Storage. Elektrichestvo [Electricity], 2004, no. 12 (in Russ.).

[17] Kulaev Yu.V., Kurbatov P.A., Kurbatova E.P., Matveev V.A., Sysoev M.A. Modeling the Electrophysical Properties of Bulk High-Temperature Superconductors in the Calculations for Magnetic Systems. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2014, no. 6, pp. 117-127 (in Russ.).

[18] Kurbatov P.A., Matveev V.A., Nizhel’skiy N.A., Polushchenko O.L. The Calculation of Magnetic Systems with Elements of High-Temperature Superconductors. Elektrichestvo [Electricity], 2009, no. 2 (in Russ.).

[19] Werfel F.N., Floegel-Delor U., Riedel T., Rothfeld R., Wippich D., Goebel B., Reiner G., Wehlau N. Towards High-Capacity HTS Flywheel Systems. IEEE Transactions on Applied Superconductivity, 2010, vol. 20, no. 4.

[20] Werfel F.N., Floegel-Delor U., Riedel T., Rothfeld R., Wippich D., Goebel B. HTS Magnetic Bearings in Prototype Application. IEEE/CSC &ESAS European superconductivity news forum, 2010, no. 12.

[21] Tomita M., Murakami M. High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K. Nature, 2003, vol. 421. 517 p.

[22] Jones L.L., Wilson W.R., Peck M.A. Design Parameters and Validation for a NonContacting Flux-Pinned Docking Interface. Cornell University, Ithaca, N.Y. 14850.

[23] Hull J.R., Mittleider J.A., Gonder J.F., Johnson P.E., McCrary K.E., McIver C.R. Design, Fabrication, and Test of a 5 kWh Flywheel Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing. 2010. Energy Storage Systems Program, November 2-4, 2010.

[24] Lee K., Kim B., Ko J., Jeong S., Lee S.S. Advanced design and experiment of a small-sized flywheel energy storage system using a high-temperature superconductor bearing. Supercond. Sci. Technol., 2007, vol. 20, pp. 634-639.

[25] http://www.spacecraftresearch.com (accessed 05.07.2015).

[26] Shoer J.P., Peck M.A. Sequences of Passively Stable Dynamic Equilibria for Hybrid Control of Reconfigurable Spacecraft. AIAA Guidance, Navigation and Control Conference, 10-13 August, 2009, Chicago, Illinois.

[27] Wenjiang Yang, Jia Xu, Long Yu, Yu Liu. Experimental investigation of mechanical characteristics in superconducting interfaces for self-assembly of spacecraft modules. Physica C: Superconductivity, 2012, vol. 483, pp. 173-177.