Static and Total Pressure Sensor Development Methodology based on Elastic Sensing Elements and Optical Rules

Authors: Borisov R.A., Antonets I.V., Krotov A.V. Published: 29.03.2021
Published in issue: #1(134)/2021  
DOI: 10.18698/0236-3933-2021-1-33-50

Category: Informatics, Computer Engineering and Control | Chapter: Elements and Devices of Computer Engineering and Control Systems  
Keywords: pressure sensors, sensing element, deformation value, optical rule

Information on the parameters of static atmospheric pressure and total pressure of the incoming air flow is the primary information in the air signal system, which is part of the integrated aircraft control system. This information makes it possible to calculate the altitude and speed of the aircraft for automated and automatic control. Static and total pressures are measured by aerometric parameter sensors, whose technical characteristics largely determine the range and values of the measurement accuracy of the air signal system. Relying on the requirements for aircraft flight safety and in accordance with the existing standards for horizontal and vertical separation, rather stringent requirements are imposed on the accuracy of air pressure measurement. Instrumental errors in measuring static and total air flow pressures with a probability of 0.95 should not exceed 0.02 and 0.05 % of the measurement range. The considered original aerometric pressure sensor based on an optical rule, whose high sensitivity requires minimal deformation of the elastic sensitive element, makes it possible to fulfill these requirements. The non-contact digital information retrieval and the operation of the information system under vacuum conditions significantly increased the efficiency of measurement processes. The paper focuses on an algorithm for calculating the main design parameters of elastic sensitive elements in almost the entire range of their standard sizes taking into account the technical capabilities of the secondary converter. The results of the experiments and experimental studies confirmed the sufficiency of theoretical methods for calculating the parameters of elastic elements for pressure sensors


[1] Philippe J., de Paolis N.V., Arenas-Buendia C., et. al. Passive and chipless packaged transducer for wireless pressure measurement. Sens. Actuator A: Phys., 2018, vol. 279, pp. 753--762. DOI: https://doi.org/10.1016/j.sna.2018.06.024

[2] Antonets I.V., Gorashkov G.M., Borisov R.A. Aerometricheskiy datchik davleniya, ispol’zuyushchiy opticheskiy metod preobrazovaniya informatsii [Aerometric pressure sensor based on optical information conversion method]. Patent RU 2653596. Appl. 04.04.2017, publ. 11.05.2018 (in Russ.).

[3] Lebedko E.G., Zvereva E.N., Nguen V.T. High-precision determination of the angular position for point light source with CCD-arrays. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2015, vol. 15, no. 3, pp. 398--404 (in Russ.). DOI: https://doi.org/10.17586/2226-1494-2015-15-3-398-404

[4] Bilizhenko I.V., Volkhonskiy V.V., Vorobyov P.A., et al. Formation of directional diagrams of passive infrared detectors based on multi-element receivers of IR radiation. Izvestiya vuzov. Priborostroenie [Journal of Instrument Engineering], 2017, vol. 60, no. 1, pp. 96--99 (in Russ.). DOI: https://doi.org/10.17586/0021-3454-2017-60-1-96-99

[5] Panov D.Yu. On large deflections of round membranes with a weak corrugation. Prikladnaya matematika i mekhanika, 1941, vol. 5, no. 2, pp. 303--318 (in Russ.).

[6] Feodosyev V.I. On large deflections and stability of a round membrane with fine corrugation. Prikladnaya matematika i mekhanika, 1945, vol. 9, no. 5, pp. 389--412 (in Russ.).

[7] Feodosyev V.I. Uprugie elementy tochnogo priborostroeniya [Elastic elements of precision instrument making]. Moscow, Oborongiz Publ., 1949.

[8] Andreeva L.E. Calculation of corrugated membranes characteristics. Priborostroenie, 1956, no. 3, pp. 11--17 (in Russ.).

[9] Andreeva L.E. Uprugie elementy priborov [Elastic elements of devices]. Moscow, Mashinostroenie Publ., 1980.

[10] Andreeva L.E. Raschet gofrirovannykh membrane. V: Raschety na prochnost’ v mashinostroenii [Calculation of corrugated membranes. In: Strength Calculations in Mechanical Engineering]. Moscow, Mashgiz Publ., 1955, pp. 55--67 (in Russ.).

[11] Ponomarev S.D., Andreeva L.E. Raschet uprugikh elementov mashin i priborov [Calculation of the elastic elements of machines and devices]. Moscow, Mashinostroenie Publ., 1980.

[12] Borisov R.A., Antonets I.V. Programma dlya rascheta uprugikh chuvstvitel’nykh elementov datchikov aerometricheskikh davleniy [Program for calculating elastic elements of air pressure sensors]. Software registration certificate no. 2019663045. Reg. 18.07.2019, publ. 09.10.2019 (in Russ.).

[13] Yavlenskiy K.N., Timofeev B.L. Spravochnik konstruktora tochnogo priborostroeniya [Handbook of precision instrumentation designer]. Leningrad, Mashinostroenie Publ., 1989.

[14] Litvin F.L., ed. Spravochnik konstruktora tochnogo priborostroeniya [Handbook of precision instrumentation designer]. Moscow, Mashinostroenie Publ., 1964.

[15] Felikson E.I. Uprugie elementy priborov [Elastic elements of devices]. Moscow, Mashinostroenie Publ., 1977.

[16] Asch G. Les captures en enstrumentation industrielle. Lyon, 1991.

[17] Barber J.R. Elasticity. Kluwer, 2004.

[18] Borisov R.A., Antonets I.V. Programma upravleniya mikrokontrollerami semeystva STM32F4, obespechivayushchaya izmerenie lineynykh peremeshcheniy chuvstvitel’nykh elementov datchikov, ispol’zuyushchikh opticheskie preobrazovateli [Control program for microcontrollers of STM32F4 family, measuring linear displacements of sensitive elements with the use of optical converters]. Software registration certificate no. 2019612079. Reg. 03.10.2018, publ. 11.02.2019 (in Russ.).