|

Multicriterion Optimal Spatial Nonlinear Guidance Method

Authors: Voronov E.M., Savchuk A.S., Spokoinyi I.A., Sychev S.I. Published: 06.12.2016
Published in issue: #6(111)/2016  
DOI: 10.18698/0236-3933-2016-6-126-139

 
Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing  
Keywords: multicriterion optimization, positioning control, nonlinear synthesis, guidance method, aggregated regulators

This research suggests a method for obtaining multicriterion optimal spatial (two-channel) control law in the task of massive aircraft weapons (MAW) guidance on a target. Theoretical foundation of this method involves the developed approach to the synthesis of multi-program position control. In this approach the stabilizing components that provides program trajectories with asymptotic stability, are obtained by applying A.A. Kolesnikov’s synergetic approach of analytical design of aggregated regulators (ADAR).

References

[1] Aranovich G.P., Mikhaylin D.A. Upravlenie i navedenie samoletov i raket [Missile and aircraft control and navigation]. Moscow, MAI Publ., 2013. 27 p.

[2] Lebedev A.A., Karabanov V.A. Dinamika sistem upravleniya bespilotnymi letatel’nymi apparatami [Air-drone flight control system dynamics]. Moscow, Mashinostroenie Publ., 1965. 528 p.

[3] Solov’yeva I.V. Sintez mnogoprogrammnykh sistem upravleniya na osnove metoda pozitsionnoy optimizatsii. Avtoref. kand. fiz.-mat. nauk [Synthesis of multiprogram control system based on positional optimization technique. Kand. phys.-math. sci. abstract]. Sankt-Petersburg, SPBU Publ., 2010. 15 p.

[4] Voronov E.M. Multiple-criteria synthesis of positional control based on multiprogram stabilization. Part 1. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie [Herald of the Bauman Moscow State Technical University. Ser. Instrument engineering]. 2012, no. 2, pp. 3-19 (in Russ.).

[5] Voronov E.M. Multiple-criteria synthesis of positional control based on multiprogram stabilization. Part 2. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie [Herald of the Bauman Moscow State Technical University. Ser. Instrument engineering], 2012, no. 3, pp. 3-11 (in Russ.).

[6] Voronov E.M., Serov V.A., Spokoynyy I.A. Optimal nonlinear guidance based on the algorithm of multi-criteria synthesis of multi-program position control. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie [Herald of the Bauman Moscow State Technical University. Ser. Instrument engineering], 2014, no. 3, pp. 54-72 (in Russ.).

[7] Kolesnikov A.A. Sinergeticheskie metody upravleniya slozhnymi sistemami: Teoriya sistemnogo sinteza [Synergetic control methods for complex systems: system synthesis theory]. Moscow, KomKniga Publ., 2006. 240 p.

[8] Kolesnikov A.A., Veselov G.E., Popov A.N., Kuz’menko A.A. Sinergeticheskie metody upravleniya slozhnymi sistemami: Mekhanicheskie i elektromekhanicheskie sistemy [Synergetic control methods for complex systems: mechanical and electromechanical systems]. Moscow, KomKniga Publ., 2008. 304 p.

[9] Kolesnikov A.A., Kobzev V.A., Nikitin A.I. Synergetics synthesis of vector control laws for aircraft automatic landing system. Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering sciences], 2011, no. 6. pp. 125-139 (in Russ.).

[10] Veselov G.E., Sklyarov A. A., Sklyarov S.A. Synergistic approach to the control of unmanned aerial vehicle. Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering sciences], 2013, no. 5, pp. 65-70 (in Russ.).

[11] Kreerenko O., Kreerenko E. Combined synthesis of control laws of the aircraft braking on the runway during landing. 29th Congress of the International Council of the Aeronautical Sciences. 2014, vol. 1, pp. 4110-4116.

[12] Veselov G., Sklyarov A., Sklyarov S. Synergetic approach to quadrotor helicopter control with attractor-repeller strategy of nondeterministic obstacles avoidance. 6th International congress on ultra modern telecommunications and control systems and workshops (ICUMT), 2014, pp. 228-235. DOI: 10.1109/ICUMT.2014.7002107

[13] Serov V.A. Genetic algorithms of optimizing control of multi-objective systems under condition of uncertainty based on conflict equilibrium. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie [Herald of the Bauman Moscow State Technical University. Ser. Instrument engineering], 2007, no. 4, pp. 70-80 (in Russ.).

[14] Alfaro-Cid Eva, McGookin Euan W. Genetic programming for the automatic design of controllers for a surface ship. IEEE transactions on intelligent transportation systems, 2008, vol. 9, no. 2, pp. 311-321. DOI: 10.1109/TITS.2008.922932

[15] NithyaRani N., GirirajKumar M., Anantharaman. Modeling and control of temperature process using genetic. IJAREEIE, 2013, vol. 2, no. 11, pp. 5355-5364.

[16] Ehrgott M. Multicriteria optimization. Berlin, Springer, 2005. 323 p.

[17] Voronin A.N. A method for multicriteria optimization of dynamic control systems. Artificial intelligence and application, 2014, vol. 1, no. 3, pp. 1-12. DOI: 10.15764/AIA.2014.03001