|

Designing a Signal Input Subsystem based on a Digitally Interfaced Microphone Array

Authors: Zhukov R.A., Suvorov D.A., Teteryukov D.O., Osekov S.S., Mozgovoy M.V., Volkov A.V. Published: 13.06.2018
Published in issue: #3(120)/2018  
DOI: 10.18698/0236-3933-2018-3-70-82

 
Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing  
Keywords: microphone array, multichannel audio capture, MEMS microphones, PDM-to-DFSDM transform, ARM Cortex-M

The article deals with the issues of developing a multichannel audio capture system to be later used in a remote speech recognition system, using an array of eight MEMS microphones as an example. We compared those approaches to solving the audio capture problem that employ arrays of analog and digital microphones. We designed and manufactured a hardware-synchronized eight-channel audio capture system based on a Pulse Density Modulation to Digital Filter for Sigma-Delta Modulation (PDM-to-DFSDM) transform, an array of digital MEMS microphones with a PDM interface and the newest line of ARM Cortex-M controllers by ST. We verified that the system developed works and that it is usable for sound source localization and beamforming before speech recognition occurs

The study was supported by Innovation Promotion Fund (grant no. 102GRNTIS5/26071)

References

[1] Woelfel M., McDonough J. Distant speech recognition. Wiley, 2009. 594 p.

[2] Kumatani K., McDonough J., Raj B. Microphone array processing for distant speech recognition: from close-talking microphones to far-field sensors. IEEE Signal Processing Magazine, 2012, vol. 29, no. 6, pp. 127–140. DOI: 10.1109/MSP.2012.2205285

[3] Tashev I. Beamformer sensitivity to microphone manufacturing tolerances. Microsoft Research. 5 p.

[4] Weinstein E., Steele K., Agarwal A., Glass J. LOUD: A 1020-node modular microphone array and beamformer for intelligent computing spaces. MIT Computer Science and Artificial Intelligence Laboratory. 18 p.

[5] Grondin F., Létourneau D., Ferland F., Rousseau V., Michaud F. The ManyEars open framework. Microphone array open software and open hardware system for robotic applications. Autonomous Robots, 2013, vol. 34, iss. 3, pp. 217–232. DOI: 10.1007/s10514-012-9316-x

[6] Lewis J., Moss B. MEMS microphones, the future for hearing aids. Analog Dialogue, 2013, vol. 47. Available at: http://www.analog.com/en/analog-dialogue/articles/mems-microphones-future-for-hearing-aids.html#author

[7] Lewis J. Analog and digital MEMS microphone design considerations. Analog Devices: company website. Available at: http://www.analog.com/media/en/technical-documentation/technical-articles/Analog-and-Digital-MEMS-Microphone-Design-Considerations-MS-2472.pdf (accessed: 15.12.2017).

[8] MEMS microphone — a breakthrough innovation in sound sensing. EE Herald, 16.02.2017. Available at: http://www.eeherald.com/section/design-guide/mems-microphone.html

[9] Janssen E., Roermund A. Look-ahead based sigma-delta modulation. Springer, 2011. 248 p.

[10] Zheng Y.R., Goubran R.A., El-Tanany M., Shi H. A microphone array system for multimedia applications with near-field signal targets. IEEE Sensors Journal, 2005, vol. 5, no. 6, pp. 1395–1406. DOI: 10.1109/JSEN.2005.858936

[11] Forsyth D.A., Ponce J. Computer vision: a modern approach. Pearson, 2003. 792 p.

[12] Woelfel M., McDonough J. Distant speech recognition. Wiley, 2009. 594 p.

[13] Kumatani K., McDonough J., Raj B. Microphone array processing for distant speech recognition: from close-talking microphones to far-field sensors. IEEE Signal Processing Magazine, 2012, vol. 29, no. 6, pp. 127–140. DOI: 10.1109/MSP.2012.2205285

[14] Tashev I. Beamformer sensitivity to microphone manufacturing tolerances. Microsoft Research. 5 p.

[15] Weinstein E., Steele K., Agarwal A., Glass J. LOUD: A 1020-node modular microphone array and beamformer for intelligent computing spaces. MIT Computer Science and Artificial Intelligence Laboratory. 18 p.

[16] Grondin F., Létourneau D., Ferland F., Rousseau V., Michaud F. The ManyEars open framework. Microphone array open software and open hardware system for robotic applications. Autonomous Robots, 2013, vol. 34, iss. 3, pp. 217–232. DOI: 10.1007/s10514-012-9316-x

[17] Lewis J., Moss B. MEMS microphones, the future for hearing aids. Analog Dialogue, 2013, vol. 47. Available at: http://www.analog.com/en/analog-dialogue/articles/mems-microphones-future-for-hearing-aids.html#author

[18] Lewis J. Analog and digital MEMS microphone design considerations. Analog Devices: company website. Available at: http://www.analog.com/media/en/technical-documentation/technical-articles/Analog-and-Digital-MEMS-Microphone-Design-Considerations-MS-2472.pdf (accessed: 15.12.2017).

[19] MEMS microphone — a breakthrough innovation in sound sensing. EE Herald, 16.02.2017. Available at: http://www.eeherald.com/section/design-guide/mems-microphone.html

[20] Janssen E., Roermund A. Look-ahead based sigma-delta modulation. Springer, 2011. 248 p.

[21] Zheng Y.R., Goubran R.A., El-Tanany M., Shi H. A microphone array system for multimedia applications with near-field signal targets. IEEE Sensors Journal, 2005, vol. 5, no. 6, pp. 1395–1406. DOI: 10.1109/JSEN.2005.858936

[22] Forsyth D.A., Ponce J. Computer vision: a modern approach. Pearson, 2003. 792 p.