|

Determination of Data Backup System Fault Tolerance

Authors: Patutina A.M., Rudakov I.V. Published: 12.10.2019
Published in issue: #5(128)/2019  
DOI: 10.18698/0236-3933-2019-5-64-78

 
Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing  
Keywords: data backup, mixed modeling, fault tolerance, semi-Markov processes

The paper considers the method of researching the fault tolerance of the backup system based on semi-Markov processes, and presents a quick overview of calculation methods for dynamic and static models of reliability analysis. The research shows that implementations based on semi-Markov processes have practically no limitations on building failure, recovery and backup models, and also provide the most accurate results. We described the existing storage technologies. By mixed, i.e., analytical-simulation, modeling, we implemented the data backup model. The simulation part, which determines the fault tolerance of switches and servers, is presented in terms of queuing theory, and the analytical part suggests defining fault tolerance for a data storage system based on semi-Markov processes

References

[1] Polovko A.M., Gurov S.M. Osnovy teorii nadezhnosti [Fundamentals of reliability theory]. St. Petersburg, BHV-Sankt-Peterburg Publ., 2006.

[2] Kalashnikov V.V. Topics on regenerative processes. CRC Press, 1994.

[3] Buslenko N.P. Modelirovanie slozhnykh system [Simulation of complex systems]. Moscow, Nauka Publ., 1978.

[4] Ryabinin I.A. Nadezhnost i bezopasnost strukturno-slozhnykh system [Reliability and safety of structural-complicated systems]. St. Petersburg, Politekhnika Publ., 2000.

[5] Shubinskiy I.B., Shulika V.F. “Universal” software package for reliability calculations and functional safety of technical equipment and systems (main description). Nadezhnost [Dependability], 2003, no. 4, pp. 65--71 (in Russ.).

[6] Zhadnov V. New possibilities of Asonika-K.V software package. CHIP NEWS: Inzhenernaya mikroelektronika, 2003, no. 10 (83), pp. 52--55 (in Russ.).

[7] Mozhaev A.S., Nozik A.A. “ARBITR” software package for modelling, reliability calculation and safety of systems. Montazh i naladka sredstv avtomatizatsii i svyazi, 2007, no. 2, pp. 32--40 (in Russ.).

[8] Viktorova V.S., Lubkov N.V., Stepanyants A.S. [Reliability of technical systems. Maintenance and analysis]. Tr. 16-y Mezhdunar. konf. "Sistemy proektirovaniya, tekhnologicheskoy podgotovki proizvodstva i upravleniya etapami zhiznennogo tsikla promyshlennogo produkta" [Proc. 16th Int. Conf. "Design for systems, preproduction engineering and management of life cycle stages of industrial product"]. Moscow, IPU RAN Publ., OOO "Analitik" Publ., 2016, pp. 14--18 (in Russ.).

[9] riskspectrum.com: website. Available at: http://www.riskspectrum.com (accessed: 09.01.2019).

[10] isograph.com: website. Available at: https://www.isograph.com (accessed: 09.01.2019).

[11] SAE ARP4761. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment. Warrendale, USA, 1996.

[12] Karnov A.A., Zelenov S.V. Stochastic methods for analysis of complex hardware-software systems. Trudy ISP RAN [Proc. ISP RAS], 2017, vol. 29, no. 4, pp. 191--202 (in Russ.).

[13] Rudakov I.V., Davudpur M. Algorithm of decomposition of formal model of discrete device functional block. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2006, no. 1, pp. 90--98 (in Russ.).

[14] Borzenkova S.Yu., Savin I.V. Security of the data storage system. Izvestiya TulGU. Tekhnicheskie nauki [News of the Tula State University. Technical Sciences], 2017, no. 10, pp. 196--200 (in Russ.).

[15] Dilip N.C. Inside Windows storage: server storage technologies for Windows 2000, Windows server 2003, and beyond. Addison-Wesley, 2004.

[16] Korolyuk B.C., Turbin A.F. Polumarkovskie protsessy i ikh prilozheniya [Semi-Markov processes and their applications]. Kiev, Naukova dumka Publ., 1976.

[17] Orsingher E., Ricciuti C., Toaldo B. On semi-Markov processes and their Kolmogorov’s integro-differential equations. J. Funct. Anal., 2018, vol. 275, iss. 4, pp. 830--868. DOI: https://doi.org/10.1016/j.jfa.2018.02.011

[18] Grabski F.G. Semi-Markov reliability model of system composed of main subsystem, cold backup component and switch. JPSRA, 2017, vol. 8, no. 1, pp. 47--53.

[19] MIL-HDBK-217. Reliability prediction of electronic equipment. Available at: http://everyspec.com/MIL-HDBK/MIL-HDBK-0200-0299/MIL-HDBK-217F_14591 (accessed: 15.01.2019).

[20] Kashtanov V.A., Medvedev A.I. Teoriya nadezhnosti slozhnykh sistem (teoriya i praktika) [Reliability theory of complex systems (theory and practice]. Moscow, Evropeyskiy tsentr po kachestvu Publ., 2002.