|

Fuzzy Phase Trajectories in Hemispherical Resonator Gyroscopes

Authors: Demenkov N.P., Mochalov I.A., Tran D.M. Published: 29.03.2021
Published in issue: #1(134)/2021  
DOI: 10.18698/0236-3933-2021-1-78-101

 
Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing  
Keywords: hemispherical resonator gyroscope, oscillator, ring resonator, fuzzy phase trajectories

The paper considers elementary fuzzy oscillator models represented by hard and fuzzy second-order differential equations with hard and fuzzy initial conditions. Linear models describe wave processes in ring resonators of hemispherical resonator gyroscopes.We show that in the case 1 (a hard model with fuzzy initial conditions), when there is no internal friction (model 1), phase trajectories appear as a fuzzy centre shaped as an elliptical ring. When internal friction is present (model 2), phase trajectories appear as a fuzzy focus shaped as a circular logarithmic spiral. In the case 2, for a fuzzy hemispherical resonator gyroscope model with hard initial conditions, when there is no internal friction (model 1), a representative point of a fuzzy phase trajectory does not stop or increase its oscillations with time, meaning that the system is asymptotically unstable, while for the model 2 the origin singularity is a fuzzy stable focus. In the case 3, for a fuzzy hemispherical resonator gyroscope model with fuzzy initial conditions, when there is no internal friction (model 1), there is a fuzzy asymptotic instability in the model 1 of a hemispherical resonator gyroscope, while in the presence of internal friction (model 2), the phase trajectory is also a function of time and controls the asymptotic stability of the fuzzy model 2 of a hemispherical resonator gyroscope. Asymptotic stability is determined for all cases and models

References

[1] Witayakiattilerd W. Nonlinear fuzzy differential equation with time delay and optimal control problem. Abstr. Appl. Anal., 2015, vol. 2015, art. 659072. DOI: https://doi.org/10.1155/2015/659072

[2] Mochalov I.A., Khrisat M.S., Shikhab Eddin M.Ya. Fuzzy differential equations in control. P. I. Informatsionnye tekhnologii [Information Technologies], 2015, vol. 21, no. 3, pp. 171--178 (in Russ.).

[3] Mochalov I.A., Khrisat M.S., Shikhab Eddin M.Ya. Fuzzy differential equations in control. P. II. Informatsionnye tekhnologii [Information Technologies], 2015, vol. 21, no. 4, pp. 243--250 (in Russ.).

[4] Mochalov I.A., Khrisat M.S., Shikhab Eddin M.Ya. Fussy partial differential equation in the task of control. Informatsionnye tekhnologii [Information Technologies], 2015, vol. 21, no. 8, pp. 563--569 (in Russ.).

[5] Wang Z.P., Wu H.N. Finite dimensional guaranteed cost sampled-data fuzzy control for a class of nonlinear distributed parameter systems. Inf. Sci., 2016, vol. 327, pp. 21--39. DOI: https://doi.org/10.1016/j.ins.2015.08.009

[6] Jameel A.F., Anakira N.R., Alomari A.K., et al. New semi-analytical method for solving two-point nth order fuzzy boundary value problem. IJMMNO, 2019, vol. 9, no. 1, pp. 12--31. DOI: https://doi.org/10.1504/IJMMNO.2019.096906

[7] Qian L., Junna Y. Two-point boundary value problems for fuzzy differential equations under generalized differentiability. Proc. ICMAI, 2018, pp. 5--9. DOI: https://doi.org/10.1145/3208788.3208791

[8] Demenkov N.P., Mikrin E.A., Mochalov I.A. Fuzzy two-point boundary value problems in mathematical modeling and control. P. 1. Problemy upravleniya [Control Sciences], 2018, no. 1, pp. 30--36 (in Russ.).

[9] Demenkov N.P., Mikrin E.A., Mochalov I.A. Fuzzy two-point boundary value problems in mathematical modeling and control. P. 2. Problemy upravleniya [Control Sciences], 2018, no. 2, pp. 31--39 (in Russ.).

[10] Gong Z., Hao Y. Fuzzy Laplace transform based on the Henstock integral and its applications in discontinuous fuzzy systems. Fuzzy Sets Syst., 2019, vol. 358, pp. 1--28. DOI: https://doi.org/10.1016/j.fss.2018.04.005

[11] Demenkov N.P., Mikrin E.A., Mochalov I.A. Fuzzy transformation of Laplace in tasks of fuzzy mathematical modelling. P. 1. Informatsionnye tekhnologii [Information Technologies], 2017, no. 4, pp. 251--258 (in Russ.).

[12] Demenkov N.P., Mikrin E.A., Mochalov I.A. Fuzzy transformation of Laplace in tasks of fuzzy mathematical modelling. P. 2. Informatsionnye tekhnologii [Information Technologies], 2017, no. 5, pp. 362--369 (in Russ.).

[13] Gultekin Сitil H. Investigation of a fuzzy problem by the fuzzy Laplace transform. AMNS, 2019, vol. 4, iss. 2, pp. 407--416. DOI: https://doi.org/10.2478/AMNS.2019.2.00039

[14] Pires D.S., Serra G.L.d.O. Methodology for evolving fuzzy Kalman filter identification. Int. J. Control Autom. Syst., 2019, vol. 17, no. 3, pp. 793--800. DOI: https://doi.org/10.1007/s12555-017-0503-6

[15] Mochalov I.A., Khrisat M.S. Estimation parameter model using fuzzy random data. Informatsionnye tekhnologii [Information Technologies], 2014, vol. 20, no. 4, pp. 14--22 (in Russ.).

[16] Demenkov N.P., Mochalov I.A. Fuzzy interpolation. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication], 2012, no. 2 (in Russ.). Available at: http://engineering-science.ru/doc/308732.html

[17] Demenkov N.P., Mochalov I.A. Fuzzy splines. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2012, no. 2 (87), pp. 48--59 (in Russ.).

[18] Reza E., Saeid A., Hossein B. Interpolation of fuzzy data by using at end fuzzy splines. IJNAA, 2017, vol. 8, iss. 2, pp. 89--97. DOI: https://doi.org/10.22075/IJNAA.2017.1419.1363

[19] Gonzalez P., Idais H., Pasadas M., et al. 3D fuzzy data approximation by fuzzy smoothing bicubic splines. Math. Comput. Simul., 2019, vol. 164, pp. 94--102. DOI: https://doi.org/10.1016/j.matcom.2018.10.005

[20] Fard O.S., Soolaki J., Torres D.F.M. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete Contin. Dyn. Syst. S, 2018, vol. 11, no. 1, pp. 59--76. DOI: https://doi.org/10.3934/dcdss.2018004

[21] Demenkov N.P., Mochalov I.A. Fuzzy system dynamics of automatic optimization. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2016, no. 1 (106), pp. 59--74 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3933-2016-1-59-74

[22] de Andres-Sanchez J., Gonzalez-Vila Puchades L. A fuzzy-random extension of the Lee --- Carter mortality prediction model. Int. J. Comput. Intell. Syst., 2019, vol. 12, iss. 2, pp. 775--794. DOI: https://doi.org/10.2991/ijcis.d.190626.001

[23] Zhao H., Li N. Performance evaluation for sustainability of strong smart grid by using stochastic AHP and fuzzy TOPSIS methods. Sustainability, 2016, vol. 8, iss. 2, art. 129. DOI: https://doi.org/10.3390/su8020129

[24] Burakov M.V., Yakovets O.B. Fuzzy logic control over a power gyroscopic system. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering], 2015, vol. 58, no. 10, pp. 804--809 (in Russ.). DOI: https://doi.org/10.17586/0021-3454-2015-58-10-804-809

[25] Demenkov N.P., Matveev V.A., Mochalov I.A. Fuzzy methods of hemispherical resonator gyroscope simulation. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2018, no. 3 (120), pp. 33--50 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3933-2018-3-33-50

[26] Manchuk D.A., Chernyy S.P. Stability analysis of fuzzy control systems in the small, in the large, as a whole. Sovremennye naukoemkie tekhnologii [Modern High Technologies], 2014, no. 5-1, pp. 74--75 (in Russ.).

[27] Tan Y., Shuai C., Jiao L., et al. An adaptive neuro-fuzzy inference system (ANFIS) approach for measuring country sustainability performance. Environ. Impact Assess. Rev., 2017, vol. 65, pp. 29--40. DOI: https://doi.org/10.1016/j.eiar.2017.04.004

[28] Xu J., Liao Z., Hu Z. A class of linear differential dynamical systems with fuzzy initial condition. Fuzzy Sets Syst., 2007, vol. 158, iss. 21, pp. 2339--2358. DOI: https://doi.org/10.1016/j.fss.2007.04.016

[29] Mazandarani M., Najariyan M. A note on "A class of linear differential dynamical systems with fuzzy initial condition". Fuzzy Sets Syst., 2014, vol. 265, pp. 121--126.DOI: https://doi.org/10.1016/j.fss.2014.05.018

[30] Xu J., Liao Z., Nieto J.J. A class of linear differential dynamical systems with fuzzy matrices. J. Math. Anal. Appl., 2010, vol. 368, iss. 1, pp. 54--68. DOI: https://doi.org/10.1016/j.jmaa.2009.12.053

[31] Goryushkin V.A. On stability of fuzzy control systems. Vestnik KRAUNTs. Fiz.-mat. nauki [Bulletin KRASEC. Physical and Mathematical Sciences], 2011, no. 1 (2), pp. 17--25 (in Russ.).

[32] Burakov M.V., Brunov M.S. Structural identification of fuzzy model. Trudy SPIIRAN [SPIIRAS Proceedings], 2014, no. 34, pp. 232--246 (in Russ.).

[33] Ghazanfari B., Niazi S., Ghazanfari A.G. Linear matrix differential dynamical systems with fuzzy matrices. Appl. Math. Model., 2012, vol. 36, iss. 1, pp. 348--356. DOI: https://doi.org/10.1016/j.apm.2011.05.054

[34] Zhuravlev V.F., Klimov D.M. Volnovoy tverdotel’nyy giroskop [Wave solid-state gyroscope]. Moscow, Nauka Publ., 1985.

[35] Basarab M.A., Kravchenko V.F., Matveev V.A. Matematicheskoe modelirovanie fizicheskikh protsessov v giroskopii [Mathematical modeling of physical processes in gyroscopy]. Moscow, Radiotekhnika Publ., 2005.

[36] Egarmin N.E. Dynamics of a non-ideal shell and control on its vibrations. Izv. RAN MTT, 1993, no. 4, pp. 49--59 (in Russ.).

[37] Merkuryev I.V., Podalkov V.V. Dinamika mikromekhanicheskogo i volnovogo tverdotel’nogo giroskopov [Dynamics of micromechanical and wave solid-state gyroscopes]. Moscow, FIZMATLIT Publ., 2009.

[38] Basarab M.A., Lunin B.S., Matveev V.A., et al. Miniature gyroscope based on elastic waves in solids for small spacecraft. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2014, no. 4 (97), pp. 80--96 (in Russ.).

[39] Demenkov N.P., Tran D.M. Effect of technological defects on the error of a wave solid-state gyroscope. Fundamental’nye problemy radioelektronnogo priborostroeniya [Fundamental Problems of Radioengineering and Device Construction], 2017, no. 3, pp. 626--629 (in Russ.).