|

Estimating Thermal Resistance of an Insulated Heat Sink for Semiconductor Power Devices

Authors: Kostikov V.G., Kostikov R.V., Gavrilin Ya.S., Shakhnov V.A. Published: 29.03.2021
Published in issue: #1(134)/2021  
DOI: 10.18698/0236-3933-2021-1-4-13

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Design and Instrument Engineering Technology and Electronic Equipment  
Keywords: semiconductor power devices, shared heat sink, thermal resistance, thermal conductivity equation

A shared heat sink plate is commonly used to cool closely spaced semiconductor power devices, its heat dissipation efficiency being determined by its thermal resistance. The paper considers the problem of determining the thermal resistance of a plate made of an insulating material for various positions of semiconductor devices on the plate. Solving the equations obtained yields results that make it possible to select the specifications for a heat sink designed to work with high-voltage semiconductor devices

References

[1] Glushitskiy I.V., Zaychenko I.I. The design features of cooling devices for airborne active phased array. Antenny, 2008, no. 9 (136), pp. 70--74 (in Russ.).

[2] D’yakonov V.P., ed. Skhemotekhnika ustroystv na moshchnykh polevykh tranzistorakh [Circuit technique of devices on power field transistors]. Moscow, Radio i svyaz Publ., 1994.

[3] Berezin O.K., Kostikov V.G., Shakhnov V.A. Istochniki elektropitaniya radio-elektronnoy apparatury [Electric power sources of radioelectronic devices]. Moscow, Tri L Publ., 2000.

[4] Kalistratov N.A. Uluchshenie ekspluatatsionnykh kharakteristik vysokovol’tnykh istochnikov pitaniya dlya moshchnykh lamp s begushchey volnoy. Dis. kand. tekh. nauk [Improving exploitation characteristics of high-voltage power sources for power traveling wave tubes. Dis. Cand. Sc. (Eng.)]. Saratov, SSTU, 2017 (in Russ.).

[5] Starenchenko A.V., Ushkar M.N. Designing of cooling systems on board the aircraft of small aircrafts Naukoemkie tekhnologii [Science Intensive Technologies], 2016, vol. 17, no. 10, pp. 3--6 (in Russ.).

[6] Rotkop L.L., Spokoynyy Yu.E. Obespechenie teplovykh rezhimov pri konstruirovanii radioelektronnoy apparatury [Providing thermal regimes at constructing radioelectronic devices]. Moscow, Sovetskoe radio Publ., 1976.

[7] Carslaw H.S., Jaeger J.C. Conduction of heat in solids. Oxford Univ. Press, 1948.

[8] Miller W. Jr. Symmetry and separation of variables. Cambridge Univ. Press, 1984.

[9] Privalov I.I. Ryady Fur’ye [Fourier rows]. Moscow, Leningrad, GNTI Publ., 1931.

[10] TU 11-78 aA0.027.002TU. Keramika vacuumplotnaya [Technical conditionsTU 11-78 aA0.027.002TU. Vacuum-tight ceramics]. Moscow, 1978 (in Russ.).

[11] Kaynarskiy I.S., Degtyareva E.V., Orlova I.G. Korundovye ogneupory i keramika [Alumina refractory and ceramics]. Moscow, Metallurgiya Publ., 1981.

[12] OST4 G0.029.207-79 Materialy neorganicheskie (steklo, keramika, sitally). Rukovodstvo po vyboru [Nonorganic materials (glass, ceramics, sitalls). Selection guide]. Moscow, 1979 (in Russ.).

[13] ET0.035.367TU. Pasty provodnikovye na osnove dragotsennykh metallov [Technical conditions ET0.035.367TU. Semiconductor paste based on precious metals]. Moscow, 2004 (in Russ.).

[14] Okhotin A.S., Borovikova R.P., Nechaeva T.V., et al. Teploprovodnost’ tverdykh tel [Heat conductivity of solids]. Moscow, Energoatomizdat Publ., 1984.

[15] GOST 4784-97. Alyuminiy i splavy alyuminievye deformiruemye. Marki [State standard GOST 4784-97. Aluminium and wrought aluminium alloys. Grades]. Moscow, Standartinform Publ., 2009.

[16] TU 6-06-134-90. Kompozitsii na osnove poliamidov 610 i 66/6 (80:20) [Technical conditions TU 6-06-134-90. Compositions based on 610 i 66/6 (80:20) poliamides]. Moscow, 1990 (in Russ.).