Compensating for Non-Ideal Signal Shape in Inductive Rotor Position Sensors for Brushless Direct Current Motors

Authors: Enin V.N., Stepanov An.V. Published: 13.04.2018
Published in issue: #2(119)/2018  
DOI: 10.18698/0236-3933-2018-2-15-26

Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Instruments and Measuring Methods  
Keywords: inductive sensor, non-ideal signals, fractional rational function, signal correction, MATLAB

The article suggests a method of compensating for non-ideal signal shape in an inductive rotor position sensor for a brushless direct current motor. The method is based on correcting the non-ideal signal by means of a fractional rational function. We used best-estimate iterative algorithms of E.Ya. Remez in order to determine fitting parameters. The method suggested makes it possible to correct distortion, phase shift and bias of a non-ideal sine signal from the inductive sensor. We used a computer simulation to study the method presented in order to compensate for a non-ideal signal employing the MATLAB software package


[1] Arakelyan A.K., Afanasyev A.A. Ventilnye elektricheskie mashiny i reguliruemyy elektroprivod. Kn. 1. Ventilnye elektricheskie mashiny [Brushless DC electric machines and controlled electric drive. Vol. 1. Brushless DC electric machines]. Moscow, Energoatomizdat Publ., 1997. 509 p.

[2] Tsatsenkin V.K. Bezreduktornyy avtomatizirovannyy elektroprivod s ventilnymi dvigatelyami [Gearless automated electric drive with brushless DC electric motors]. Moscow, MEI Publ., 1991. 240 p.

[3] Ovchinnikov I.E. Teoriya ventilnykh elektricheskikh dvigateley [Theory of brushless DC electric motors]. Leningrad, Nauka Publ., 1985. 164 p.

[4] Le H.T., Hoang H.V., Jeon J.W. Efficient method for correction and interpolation signal of magnetic encoders. 6th IEEE Int. Conf. on Industrial Informatics, 2008, pp. 1383–1388. DOI: 10.1109/INDIN.2008.4618320 Available at: http://ieeexplore.ieee.org/document/4618320

[5] Balemi S. Automatic calibration of sinusoidal encoder signals. IFAC Proceedings Volumes, 2005, vol. 38, no. 1, pp. 68–73. DOI: 10.3182/20050703-6-CZ-1902.01190 Available at: https://www.sciencedirect.com/science/article/pii/S1474667016372020

[6] Hoang H.V., Jeon J.W. Signal compensation and extraction of high resolution position for sinusoidal magnetic encoders. Int. Conf. on Control, Automation and Systems, 2007, pp. 1368–1373. DOI: 10.1109/ICCAS.2007.4406551 Available at: http://ieeexplore.ieee.org/document/4406551

[7] Hoang H.V., Jeon J.W. An efficient approach to correct the signals and generate high-resolution quadrature pulses for encoders. IEEE Transactions on Industrial Electronics, 2011, vol. 58, no. 8, pp. 3634–3646. DOI: 10.1109/TIE.2010.2093472 Available at: http://ieeexplore.ieee.org/document/5639048

[8] Hwang S.H., Kim D.Y., Kim J.M., Jang D.H. Signal compensation for analog rotor position errors due to nonideal sinusoidal encoder signals. Journal of Power Electronics, 2014, vol. 14, no. 1, pp. 82–91.

[9] Hoseinnezhad R., Bad-Hadiashar A., Harding P. Calibration of resolver sensors in electromechanical bracing system: A modified recursive weighted least-squares approach. IEEE Transaction on Industrial Electronics, 2007, vol. 54, no. 2, pp. 1052–1060. DOI: 10.1109/TIE.2007.893049 Available at: http://ieeexplore.ieee.org/document/4140626

[10] Enin V.N., Stepanov A.V. Characteristic correction of the inductive rotor position sensor of contactless direct current motor of the disc type. Radiostroenie [Radio Engineering], 2017, no. 2, pp. 37–53. Available at: http://www.radiovega.su/jour/article/view/93

[11] Remez E.Ya. Osnovy chislennykh metodov Chebyshevskogo priblizheniya [Foundations of numerical methods with Chebyshev approximation]. Kiev, Naukova dumka Publ., 1969. 623 p.