|

Instruments and methods of measurement laser method for vegetation monitoring

Authors: Belov M.L., Bullo O.A., Fedotov Yu.V., Gorodnichev V.A. Published: 14.04.2015
Published in issue: #2(101)/2015  
DOI: 10.18698/0236-3933-2015-2-71-82

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Instruments and Measuring Methods  
Keywords: laser method, fluorescence, vegetation, detection of stress conditions

The paper considers a laser fluorescence method for vegetation monitoring. It presents the results of an experimental study of plants’ laser-induced fluorescence spectra under various stress conditions caused by the presence of soil pollutants, excess water or mechanical damages. At the fluorescence excitation wavelength of 532 nm, the impact of different stress factors proves to manifest itself in both increasing the laser-induced fluorescence intensity and changing the form of the fluorescence spectrum, according to stress types and various vegetation types. Fluorescence intensities ratio at two wavelengths of 680 and 740 nm can be regarded as an identifying factor characterizing the form change of the laser-induced fluorescence spectrum. Measurement of both the intensity and spectrum form of plants’ laser-induced fluorescence can be the basis of the laser method for detecting plants’ stress conditions.

References

[1] Panneton B., Guillaume S., Roger J.M., Samson G. Improved discrimination between monocotyledonous and dicotyledonous plants for weed control based on the blue-green region of ultraviolet-induced fluorescence spectra. Appl. Spectrosc., 2010, vol. 64, no. 1, pp. 30-36. DOI: dx.doi.org/10.1366/000370210790572106

[2] Panneton B., Guillaume S., Roger J.M., Samson G. Discrimination of corn from monocotyledonous weeds with ultraviolet (UV) induced fluorescence. Appl. Spectrosc., 2011, vol. 65, no. 1, pp. 10-19. DOI: dx.doi.org/10.1366/10-06100

[3] Gouveia-Neto A.S., da Silva E.A., Cunha P.C., Oliveira-Filho R.A., Silva L.M.H., da Costa E.B., Camara TJ.R., Willadino L.G. Plant abiotic stress diagnostic by laser induced chlorophyll fluorescence spectral analysis of In vivo leaf tissue of biofuel species. Proc. of SPIE, 2010, vol. 7568, pp. 75680G-1-75680G-8. DOI: 10.1117/12.839462

[4] Zhi-Qiang C., Wen-Li C. Effects of NaCl on photosynthesis in arabidopsis and thellungiella leaves based on the fluorescence spectra, the fast chlorophyll fluorescence induction dynamics analysis and the delayed fluorescence technique. Proc. of SPIE, 2010, vol. 7568, pp. 756822-1-756822-8. DOI: 10.1117/12.841257

[5] Saito Y., Takahashi K., Nomura E., Mineuchi K., Kawahara T.D., Nomura A., Kobayashi S., Ishi H. Visualization of laser-induced fluorescence of plants influenced by environmental stress with a microfluorescence imaging system and a fluorescence imaging lidar system. Proc. of SPIE, 1997, vol. 3059, pp. 190-198. DOI: 10.1117/12.277614

[6] Hristov H.A., Borisova E.G., Avramov L.A., Kolev I.N. Applications of laser-induced fluorescence for remote sensing. Proc. of SPIE, 11th Int. School on Quantum Electronics: Laser Physics and Applications, 2001, vol. 4397, pp. 496-500. DOI: 10.1117/12.425192

[7] Lee K.J., Park Y., Bunkin A., Nunes R., Pershin S., Voliak K. Helicopter-based lidar system for monitoring the upper ocean and terrain surface. Appl. Opt., 2002, vol. 41, no. 3, pp. 401-406. DOI: 10.1364/AO.41.000401

[8] Corp L.A., McMurtrey J.E., Middleton E.M., Mulchi C.L., Chappelle E.W., Daughtry C.S.T. Fluorescence sensing systems: In vivo detection of biophysical variations in field corn due to nitrogen supply. Remote Sensing of Environment, 2003, vol. 86, pp. 470-479. DOI: 10.1016/S0034-4257(03)00125-1

[9] Grishaev M.V., Zuev V.V., Kharchenko O.V. Fluorescent channel of the Siberian Lidar Station. Proc. of SPIE, 2006, vol. 6580, pp. 65800U-1-65800U-6. DOI:10.1117/12.724940

[10] Matvienko G., Timofeev V., Grishin A., Fateyeva N. Fluorescence lidar method for remote monitoring of effects on vegetation. Proc. of SPIE, 2006, vol. 6367, pp. 63670F-1-63670F-8. DOI: 10.1117/12.689612

[11] Zavoruev V.V., Zavorueva E.N. Fluorescence of poplar leaves, growing near the road. Opt. Atmos. Okeana [Atmos. Ocean Opt.], 2011, vol. 24, no. 5, pp. 437-440 (in Russ.).

[12] Belasque J., Gasparoto M.C.G., Marcassa L.G. Detection of mecanical and disease stresses in citrus plants by fluorescence spectroscopy. Appl. Opt., 2008, vol. 47, no. 11, pp. 1922-1926. DOI: dx.doi.org/10.1364/AO.47.001922

[13] Gouveia-Neto A.S., Silva E.A., Oliveira R.A., Cunha P.C., Costa E.B., Camara TJ.R, Willadino L.G. Water deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodisiel. Proc. of SPIE, 2011, vol. 7902. pp. 79020А-1-79020А-10. DOI:10.1117/12.872991

[14] Maurya R., Prasad S.M., Gopal R. LIF technique offers the potential for the detection of cadmium-induced alteration in photosynthetic activities of Zea Mays L. J. of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, vol. 9, pp. 2935. DOI: 10.l0l6/j.jphotochemrev.2008.03.001

[15] Belov M.L., Bullo O.A., Gorodnichev V.A. Laser fluorescence detection method of plant stress conditions caused by insufficient nutrients or contaminants in soil. Jelektr. Nauchno-Tehn. Izd. "Nauka i obrazovanie" MGTU im.N.E. Baumana [El. Sc.-Tech. Publ. "Science and Education" of Bauman MSTU], 2012, no. 12 (in Russ.). DOI: 10.7463/1212.0506199

[16] Middleton E., McMurtrey J.E., Entcheva Campbell P.K., Corp L.A., Butchera L.M., Chappellea E.W. Optical and fluorescence properties of corn leaves from different nitrogen regimes. Proc. of SPIE, 2003, vol. 4879, pp. 72-83. DOI:10.1117/12.463087

[17] Merzlyak M.N. Pigments, leaf optics and plant state. Soros. Obr Zhur (SOZh) [Soros Ed. J.], 1998, no. 4, pp. 19-24 (in Russ.).

[18] Burling K., Hunsche M., Noga G. Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat. J. Plant Physiol. (JPP), 2011, vol. 168, no. 14, pp. 1641-1648. DOI: 10.1016/j.jplph.2011.03.016

[19] Grishaev M.V., Sal’nikova N.S. A setup for remote recording of the spectrum of laser-induced fluorescence from crowns of woody plants. Pribory i tekhnika eksperimenta [Instr. and Experim. Techn., vol. 53, no. 5. pp. 746-749], 2010, no. 5, pp. 133-136 (in Russ.). DOI: 10.1134/S0020441210050246

[20] Saito Y., Saito R., Nomura E., Kawahara T.D., Nomur A., Takaragaki S., Ida K., Takeda S. Performance check of vegetation fluorescence imaging lidar through in vivo and remote estimation of chlorophyll concentration inside plant leaves. Optical Review, 1999, vol. 6, no. 2, pp. 155-159. DOI: 10.1007/s10043-999-0155-8

[21] Afonasenko A.V., Iglakova A.I., Matvienko G.G., Oshlakov V.K., Prokop’ev V.E. Laboratory and lidar measurements of birch leaves spectral characteristics in different periods of vegetation. Opt. Atmos. Okeana [Atmos. Ocean Opt.], 2012, vol. 25, no. 3, pp. 237-243 (in Russ.).

[22] Bunkin F.V., Bunkin A.F. Lidar sensing of water, ground, and plant surfaces. Opt. Atmos. Okeana [Atmos. Ocean Opt.], 2000, vol. 13, no. 1, pp. 63-68 (in Russ.).

[23] Barbini R., Colao F., Fantom R., Palucci F., Ribezzo S. Laser remote monitoring of the plant photosynthetic activity. Proc. of SPIE, 1995, vol. 2585, pp. 57-65. DOI:10.1117/12.227169

[24] Yakovets O.G. Fitofiziologiya stressa [Phytophysiology of stress]. Minsk, BGU Publ., 2010, 103 p.

[25] Lysenkov V.S., Varduni T.V., Soyer V.G., Krasnov V.P. Plant chlorophyll fluorescence as an environmental stress characteristic: a theoretical basis of the method application. Fundam. Iss. [Fundam. Res.], 2013, no. 4 (1), pp. 112-119 (in Russ.).