|

Features of a Finite Element Solution to Calculating Real Contact Area of Rough Bodies

Authors: Murashov M.V., Panin S.D. Published: 12.08.2016
Published in issue: #4(109)/2016  
DOI: 10.18698/0236-3933-2016-4-19-32

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Instruments and Measuring Methods  
Keywords: real contact area, roughness, finite element method, elasticplastic deformation, ANSYS

Precision engineering predicts thermal and electrical contact conduction as well as friction and wear of instrument parts by analyzing contact mechanics. Real contact area is a key parameter for such an analysis. In this article we describe a method to determine the real contact area of the interaction of two rough bodies under the external pressure. Using micron-sized bodies contact example we studied the effect of the mesh density on the result. The article helps choose the mesh density to reduce calculation errors. We compared the calculation results for the first and second level roughness models. Our findings show that, disregarding the indentation size effect, the real contact area does not change substantially when choosing a model with the second level roughness.

References

[1] Ausloos M., Berman D.H. A multivariate weierstrass-mandelbrot function. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1985, vol. 400, pp. 331- 350. DOI: 10.1098/rspa.1985.0083

[2] Yan W., Komvopoulos K. Contact analysis of elastic-plastic fractal surfaces. Journal of Applied Physics, 1998, vol. 84, pp. 3617-3624. DOI: 10.1063/1.368536

[3] Goryacheva I.G. Contact mechanics in tribology. Dordrecht, Kluwer Academic Publishers, 1998. 364 p.

[4] Zhao Y., Chang L. A model of asperity interactions in elastic-plastic contact of rough surfaces. ASME Journal of Tribology, 2001, vol. 123, pp. 857-864. DOI: 10.1115/1.1338482

[5] Sahoo P., Banerjee A. Asperity interaction in elastic-plastic contact of rough surfaces in presence of adhesion. Journal of Physics D: Applied Physics, 2005, vol. 38, pp. 2841-2847. DOI: 10.1088/0022-3727/38/16/016

[6] Sahoo P., Banerjee A. Asperity interaction in adhesive contact of metallic rough surfaces. Journal of Physics D: Applied Physics, 2005, vol. 38, pp. 4096-4103. DOI: 10.1088/0022-3727/38/22/013

[7] Sahoo P. Adhesive friction for elastic-plastic contacting rough surfaces considering asperity interaction. Journal of Physics D: Applied Physics, 2006, vol. 39, pp. 2809-2818. DOI: 10.1088/0022-3727/39/13/026

[8] Ciavarella M., Greenwood J.A., Paggi M. Inclusion of "interaction" in the Greenwood and Williamson contact theory. Wear, 2008, vol. 265, pp. 729-734. DOI: 10.1016/j.wear.2008.01.019

[9] Paggi M., Ciavarella M. The coefficient of proportionality between real contact area and load, with new asperity models. Wear, 2010, vol. 268, no. 7, pp. 1020-1029. DOI: 10.1016/j.wear.2009.12.038

[10] Hanaor D.A.H., Gan Y., Einav I. Contact mechanics of fractal surfaces by spline assisted discretization. International Journal of Solids and Structures, 2015, vol. 59, pp. 121-131. DOI: 10.1016/j.ijsolstr.2015.01.021

[11] Paggi M., Barber J.R. Contact conductance of rough surfaces composed of modified RMD patches. International Journal of Heat and Mass Transfer, 2011, vol. 54, iss. 21, pp. 4664-4672. DOI: 10.1016/j.ijheatmasstransfer.2011.06.011

[12] Sahoo P., Ghosh N. Finite element contact analysis of fractal surfaces. Journal of Physics D: Applied Physics, 2007, vol. 40, pp. 4245-4252. DOI: 10.1088/0022-3727/40/14/021

[13] Thompson M.K. A multi-scale iterative approach for finite element modelling of thermal contact resistance: PhD. thesis, Cambridge, MA, USA: Massachusetts Institute of Technology, 2007. 100 p.

[14] Sychev M.P., Murashov M.V. Modelling of contact resistance. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr., Spetsvyp "Informatsionnye tekhnologii i komp’yuternye sistemy" [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng., Spec. Issue "Information technologies and computer systems"], 2011, pp. 12-18 (in Russ.).

[15] Murashov M.V., Panin S.D. Modeling of thermal contact conductance. Proceedings of the International heat transfer conference IHTC14, August 8-13, 2010, Washington, DC, USA, vol. 6, pp. 387-392. DOI: 10.1115/IHTC14-22616

[16] Murashov M.V., Panin S.D. Numerical modelling of contact heat transfer problem with work hardened rough surfaces. International Journal of Heat and Mass Transfer, 2015, vol. 90, pp. 72-80. DOI: 10.1016/j.ijheatmasstransfer.2015.06.024

[17] Thompson M.K., Thompson J.M. Considerations for the incorporation of measured surfaces in finite element models. Scanning, 2010, vol. 32, no. 4, pp. 183-198. DOI: 10.1002/sca.20180

[18] Kwon O.H., Thompson M.K. The effect of surface smoothing and mesh density for single asperity contact. Proceedings of the International Conference on Surface Metrology, Worcester, MA, 2009. 5 p.

[19] Kwon O.H. Investigation on the effect of mesh density and surface smoothing for real rough surfaces in contact. M.S. Thesis. Korea Advanced Institute of Science and Technology, Department of Civil and Environmental Engineering, 2009. 93 p.

[20] Dimitri R., De Lorenzis L., Scott M.A., Wriggers P., Taylor R.L., Zavarise G. Isogeometric large deformation frictionless contact using T-splines. Computer Methods in Applied Mechanics and Engineering, 2014, vol. 269, pp. 394-414. DOI: 10.1016/j.cma.2013.11.002

[21] Thompson M.K. A Comparison of methods to evaluate the behavior of finite element models with rough surfaces. Scanning, 2011, vol. 33, pp. 353-369. DOI: 10.1002/sca.20252

[22] Kalpin Yu.G., Perfilov V.I., Petrov P.A., Ryabov V.A., Filippov Yu.K. Soprotivlenie de-formatsii i plastichnost’ metallov pri obrabotke davleniem [Resistance to deformation and plasticity of metals treated by pressure]. Moscow, Maschinostroenie Publ., 2011. 244 p.