|

Specialized Device of Test Stand for Precision Gyroscopic Device Qualification

Authors: Tang Xingyuan, Podchezertsev V.P. Published: 06.12.2016
Published in issue: #6(111)/2016  
DOI: 10.18698/0236-3933-2016-6-15-30

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Navigation Instruments  
Keywords: precision turntable, calibration, identification of errors model, rotary-caging mechanism, the Maltese cross, gyroscope

The paper proposes a rather simple rotating device based on the Maltese cross for the precision test turntable of the calibration of gyroscopic sensor elements of inertial class. The device is complemented by a mechanism of stiff and unambiguous caging in fixed positions. The problem of combining these two functions of rotation and locking is solved without increasing the number of elements of the mechanism and its complexity. This paper presents the kinematic analysis of the proposed device and optimization of its parameters, taking into account manufacturing tolerances. To reduce the magnitude of friction in the caging device, we provide a special mechanism to ensure a decrease in pressure between the contacting surfaces.

References

[1] Li Fu, Xi Yang, Ling Ling Wang. A novel calibration procedure for dynamically tuned gyroscope designed by D-optimal approach. Measurement, 2013, vol. 46, no. 9, pp. 3173-3180. DOI: 10.1016/j.measurement.2013.05.026

[2] IEEE Specification Format Guide and Test Procedure for Two-Degree-of-Freedom Dynamically Tuned Gyros. ANSI/IEEE Std 813-1988. 1989. DOI: 10.1109/IEEESTD.1989.94579

[3] Zhao MeiLin. Research on rate stability of turntables. Harbin Institute of Technology, 2013.

[4] Podchezertsev V.P., Tan Sinyuan’. Research on rotation arresting devise for precision swivel stand. Aktual’nye problemy rossiyskoy kosmonavtiki. Trudy XXXIX akademicheskikh chteniy po kosmonavtike [Russian cosmonautics contemporary issues. Proc. XXXIX academic reading on cosmonautics]. Moscow, 2015. 511 p. (in Russ.).

[5] Podchezertsev V.P., Tan Sinyuan’, Tsin’ Tszykhao. Components of model of drift dynamically tuned gyro. Aviakosmicheskoe priborostroenie [Aerospace Instrument-Making], 2015, no. 1, pp. 8-18 (in Russ.).

[6] Tan Sinyuan’. Verification automatization for dynamically tuned gyroscope characteristics. Molodezhnyy nauchno-tekhnicheskiy vestnik. MGTU im. N.E. Baumana [Electronic periodical youth scientific and technical bulletin], 2014, no. 10. URL: http://sntbul.bmstu.ru/doc/737232.html (accessed 07.04.2015) (in Russ.).

[7] Matveev V.A., Podchezertsev V.P., Fateev V.V. Giroskopicheskie stabilizatory na DNG [Gyro stabilizers with dynamically tuned gyroscopes]. Moscow, Bauman MSTU Publ., 2005. 102 p.

[8] Elektrodvigatel’ kollektornyy DPR-42-N1-03 [Commutator motor DPR-42-N1-03]. "Elektronika i svyaz" company: website. URL: http://www.eandc.ru/catalog/detail.php?ID=5834 (accessed 12.08.16).

[9] Verkovich G.A., Golovenkin E.N., Golubkov V.A. Spravochnik konstruktora tochnogo priborostroeniya [Precision instruments designer handbook]. Leningrad, Mashinostroenie Publ., 1989. 792 p.

[10] Matveev V.A., Podchezertsev V.P. Errors due to bearing vibration for dynamically tuned gyro operating as angular velocity sensor. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie [Herald of the Bauman Moscow State Technical University. Ser. Instrument Engineering], 1999, no. 1, pp. 40-48 (in Russ.).