|

Time Transfer using the PPP Method Based on Measurements of GLONASS User Navigation Equipment

Authors: Mitrikas V.V., Pecheritsa D.S., Skakun I.O., Fedotov V.N. Published: 03.08.2018
Published in issue: #4(121)/2018  
DOI: 10.18698/0236-3933-2018-4-32-44

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Navigation Instruments  
Keywords: GLONASS, GNSS, time standard, PPP method, phase ambiguity, time, frequency, time and frequency

The article deals with using the PPP (Precise Point Positioning) method for highly accurate time and frequency transfer in reference generators based on measurements of the GLONASS navigation spacecraft. We supply the results of experimental investigations of reference generator time transfer via the PPP method, which reveal a systematic bias in the generator frequency difference computed from the time scale differences obtained. We show that desynchronization of code and phase measurements explains this bias. We note that rebooting the receiver may lead to changes in code and phase desynchronization. We present time transfer results obtained via the differential method accounting for integer ambiguity resolution of the GLONASS navigation spacecraft phase measurements

References

[1] Anderle R.J. Point positioning concept using precise ephemeris. Satellite Doppler Positioning, 1976, pp. 47–75.

[2] Denisenko O.V., Fedotov V.N., Silvestrov I.S., Smirnov F.R., Bazhenov N.R., Gerieva L.B. Assurance of the uniformity of measurements in the development and use of GLONASS. Measurement Techniques, 2015, vol. 58, no. 1, pp. 23–28. DOI: 10.1007/s11018-015-0657-7 Available at: https://link.springer.com/article/10.1007/s11018-015-0657-7

[3] Fedotov V.N. Аccuracy estimation of non-request GLONASS measuring equipment GLONASS. Izmeritelnaya tekhnika, 2009, no. 1, pp. 25–28 (in Russ.).

[4] Pecheritsa D.S., Fedotov V.N. [Calibration of non-request GLONASS measuring equipment providing traceability to governmental standards of units]. Trudy VII Vserossiyskoy konferentsii «Fundamentalnoe i prikladnoe koordinatno-vremennoe i navigatsionnoe obespechenie» [Proc. VII Russ. Conf. "Fundamental and applied time-coordinate and navigation support"], 2017, pp. 204–205 (in Russ.).

[5] Defraigne P., Sleewaegen J.M. Code-phase clock bias and frequency offset in PPP clock solutions. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2016, vol. 63, no. 7, pp. 986–992. DOI: 10.1109/TUFFC.2015.2501350Available at: http://ieeexplore.ieee.org/document/7330027

[6] Montenbruck O., Steigenberger P., Khachikyan R., Weber G., Langley R.B., Mervart L., Hugentobler U. IGS-MGEX: preparing the ground for multi-constellation GNSS science. Inside GNSS, 2014, vol. 9, no. 1, pp. 42–49.

[7] Petit G., Luzum B., eds. IERS Conventions. 2010. Frankfurt am Main, Verlag des Bundesamts fur Kartographie und Geodasie, 2010. 179 p.

[8] Sosnica K., Thaller D., Dach R., Steigenberger P., Beutler G., Arnold D., Jaggi A. Satellite laser ranging to GPS and GLONASS. Journal of Geodesy, 2015, vol. 89, no. 7, pp. 725–743. DOI: 10.1007/s00190-015-0810-8 Available at: https://link.springer.com/article/10.1007/s00190-015-0810-8

[9] Delporte J., Mercier F., Laurichesse D., Galy O. GPS carrier-phase time transfer using single-difference integer ambiguity resolution. International Journal of Navigation and Observation, 2008, vol. 2008, art. 273785. DOI: 10.1155/2008/273785 Available at: https://www.hindawi.com/journals/ijno/2008/273785

[10] Tatarnikov D.V., Astakhov A.V. Approaching millimeter accuracy of GNSS positioning in real time with large impedance ground plane antennas. Proc. ION ITM, 2014, pp. 844–848.