Fabrication of Tuning-Fork Gyroscope Resonator using Directed Chemical Etching of Fused Silica

Authors: Kuznetsov V.S., Maiorov D.V., Andreev P.A. Published: 13.08.2019
Published in issue: #4(127)/2019  
DOI: 10.18698/0236-3933-2019-4-32-44

Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Navigation Instruments  
Keywords: fused silica, hydrofluoric acid, chemical etching, laser, structuring, gyroscope, resonator

The article presents the results of the experimental and practical work devoted to the study of directed chemical etching of fused silica locally exposed to ultra-short pulsed laser radiation as a way to produce sensitive elements of precision instruments of orientation, stabilization and navigation as resonators of tuning fork gyroscopes. The essence of the directed chemical etching method is presented. The created experimental setup structure and components are purposed and the laser processing and chemical etching operational modes are described. The laser processing mode obtained as a result of the experiment was used to fabricate the tuning fork gyroscope resonator. The etching rate of exposed fused silica in 5 % hydrofluoric acid is 27.5 to 68.8 µm/hour. That is much faster than the etching rate of the non-affected material. Based on this results the application of the method in the precision instruments fabrication area can be considered promising and subjected to further study


[1] Vetrova E.V., Smirnov I.P., Kozlov D.V., et al. Design features of sensitive elements for quartz and silicon pendulum accelerometers. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy [Rocket-Space Device Engineering and Information Systems], 2017, no. 2, vol. 4, pp. 95--102 (in Russ.).

[2] Cho J.Y., Najafi K. A high-Q all-fused silica solid-stem wineglass hemispherical resonator formed using micro blow torching and welding. MEMS, 2015, pp. 821--824. DOI: 10.1109/MEMSYS.2015.7051085

[3] Senkal D., Ahamed M.J., Askari S., et al. 1 million Q-factor demonstrated on micro-glassblown fused silica wineglass resonators with out-of-plane electrostatic transduction. Solid-State Sensors, Actuators and Microsystems Workshop, 2014, pp. 68--71.

[4] Pan Y., Wang D., Wang Y., et al. Monolithic cylindrical fused silica resonators with high Q factors. Sensors, 2016, vol. 16, no. 8, p. 1185. DOI: 10.3390/s16081185

[5] Xi X., Wu Y., Wu X., et al. A novel combined fused silica cylinder shell vibrating gyroscope. Sens. Mater., 2013, vol. 25, no. 5, pp. 323--339. DOI: 10.18494/SAM.2013.850

[6] Woo J.-K., Cho J.Y., Boyd C., et al. Whole-angle-mode micromachined fused-silica birdbath resonator gyroscope (WA-BRG). MEMS, 2014, pp. 20--23. DOI: 10.1109/MEMSYS.2014.6765563

[7] Fan M., Zhang L. Research progress of quartz tuning fork micromachined gyroscope. Proc. Int. Conf. Artificial Intelligence and Industrial Engineering, 2015, pp. 361--364. DOI: 10.2991/aiie-15.2015.100

[8] Abdel-Rahman M.R., Albassam B.A., et al. Driveless gyroscope response of a quartz piezoelectric vibratory tuning fork. Proc. 4th Int. Cong. APMAS2014, 2014, vol. 127, no. 4, pp. 1352--1354. DOI: 10.12693/APhysPolA.127.1352

[9] Qinqyuan Z., Lihui F., Jianmin C., et al. Design of a new structure quartz MEMS gyroscope with high sensitivity. IOP Conf. Ser.: Materials Science and Engineering, 2018, vol. 382. DOI: 10.1088/1757-899X/382/4/042036

[10] Shchenyatskiy A.V., Kotel’nikov M.A., Basharova A.A. Influence of design data of a sensitive element on technical characteristics of a solid-state wave gyroscope. Vestnik PNIPU. Mashinostroenie, materialovedenie [Bulletin PNRPU. Mechanical Engineering, Materials Science],2017, vol. 19, no. 2, pp. 92--105 (in Russ.).

[11] Xie L., Wu X., Li S., et al. A Z-axis quartz cross-fork micromachined gyroscope based on shear stress detection. Sensors, 2010, vol. 10, no. 3, pp. 1573--1588. DOI: 10.3390/s100301573

[12] Lunin B.S., Torbin S.N. Effect of the internal stress in quartz glass on the internal friction. Vestnik moskovskogo universiteta. Ser. 2: Khimiya, 2003, vol. 44, no. 2, pp. 108--114 (in Russ.).

[13] Verhaverbeke S., Teerlinck I., Vinckier C., et al. The etching mechanisms of SiO2 in hydrofluoric acid. J. Electrochem. Soc., 1994, vol. 141, no. 10, pp. 2852--2857. DOI: 10.1149/1.2059243

[14] Zhu H., Holl M., Ray T., et al. Characterization of deep wet etching of fused silica glass for single cell and optical sensor deposition. J. Micromechanics Microengineering, 2009, vol. 19, no. 6, art. 065013. DOI: 10.1088/0960-1317/19/6/065013

[15] Nagarah J.M., Wagenaar D.A. Ultradeep fused silica glass etching with an HF-resistant photosensitive resist for optical imaging applications. J. Micromechanics Microengineering, 2012, vol. 2, no. 3, art. 035011. DOI: 10.1088/0960-1317/22/3/035011

[16] Stankevic V., Raciukaitis G. Formation of rectangular channels in fused silica by laser-induced chemical etching. Lithuanian Journal of Physics, 2014, vol. 54, no. 3, pp. 136--141. DOI: 10.3952/physics.v54i3.2952

[17] Bellouard Y., Said A., Dugan M., et al. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express, 2004, vol. 12, no. 10, pp. 2120--2129. DOI: 10.1364/OPEX.12.002120

[18] Hnatovsky C., Taylor R.S., Simova E., et al. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching. Appl. Phys. A, 2006, no. 84, pp. 47--61. DOI: 10.1007/s00339-006-3590-4

[19] Kiyama S., Matsuo S., Hashimoto S., et al. Examination of etching agent and etching mechanism of femtosecond laser microfabrication of channels inside vitreous silica substrates. J. Phys. Chem. C, 2009, vol. 113, no. 27, pp. 11560--11566. DOI: 10.1021/jp900915r

[20] Li X., Xu J., Lin Z., et al. Polarisation-intensitive space-selective etching in fused silica induced by picosecond laser irradiation. arxiv.org: website. Available at: https://arxiv.org/abs/1812.10661 (accessed: 18.02.2019).

[21] Gottmann J., Hermans M., Repiev N., et al. Selective laser-induced etching of 3D precision quartz glass components for microfluidic applications --- up-scaling of complexity and speed. Micromachines, 2017, vol. 8, no. 4, p. 110. DOI: 10.3390/mi8040110

[22] Hermans M., Gottmann J., Riedel F. Selective, laser-induced etching of fused silica at high scan-speeds using KOH. JLMN, 2014, vol. 9, no. 2, pp. 126--131. DOI: 10.2961/jlmn.2014.02.0009

[23] Laboratoriya lazernogo nanostrukturirovaniya stekla [Laboratory of laser glass nanostructuring]. fpi.defence.ru: website (in Russ.). Available at: https://fpi.defence.ru/article/7176 (accessed: 18.02.2019).

[24] Dostovalov A.V., Vol’f A.A., Babin S.A. Point-by-point writing of first and second order FBGs through polyimide coating with femtosecond radiation at 1026 nm. Prikladnaya fotonika [Applied Photonics], 2014, no. 2, pp. 48--61 (in Russ.).

[25] Chimier B., Uteza O., Sanner N., et al. Damage and ablation thresholds of fused-silica in femtosecond regime. Phys. Rev. B, 2011, vol. 84, no. 9, art. 094104. DOI: 10.1103/PhysRevB.84.094104