Sensing System and Methods for Measuring Oscillations in the Resonator of a Hemispherical Resonator Gyroscope

Authors: Trutnev G.A., Perevozchikov K.K., Nazarov S.B. Published: 18.03.2020
Published in issue: #1(130)/2020  
DOI: 10.18698/0236-3933-2020-1-50-63

Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Navigation Instruments  
Keywords: hemispherical resonator gyroscope, resonator, measuring instrument, alternating voltage, oscillations

The paper considers a hemispherical resonator gyroscope and methods for combining eight capacitive displacement sensors into a measuring instrument. We propose a circuit diagram for a measuring instrument based on operational amplifiers. The diagram makes it possible to implement oscillation measurement for direct and alternating resonator voltages as well as a combined scenario. We derived a mathematical model simulating the output signal of the measuring instrument. We analysed the sensitivity of our system for different implementations of the measuring instrument. For the case when the modulating signal frequency and resonator oscillation frequency are multiples of each other, we derived expressions to find the angular wave position and offset signals for the control system. We used the linear term of the signal model to derive these equations, provided estimations of the errors occurring and guidelines on reducing them. We also investigated the case when the frequencies of the modulating and modulated signals are not multiples. We consider a general approach to evaluating wave pattern parameters, taking the emerging errors into account


[1] Klimov D.M., Zhuravlev V.F., Zhbanov Yu.K. Kvartsevyy polusfericheskiy rezonator (Volnovoy tverdotel’nyy giroskop) [Crystal hemispherical resonator (Hemispherical resonator gyroscope)]. Moscow, Kim L.A. Publ., 2017.

[2] Trutnev G.A., Nazarov S.B., Perevozchikov K.K., et al. Measurement calculation system “Solid-state resonator gyroscope”. Intelligent Systems in Manufacturing, 2017, vol. 15, no. 3, pp. 62--72 (in Russ.). DOI: http://dx.doi.org/10.22213/2410-9304-2017-3-62-72

[3] Trutnev G.A. Model of the hemispherical resonator gyroscope construction damping. Vestn. Udmurtsk. Univ. Matem. Mekh. Komp. Nauki, 2019, vol. 29, no. 1, pp. 135--146 (in Russ.). DOI: https://doi.org/10.20537/vm190108

[4] Arslanova M.L., Trutnev G.A. Basics of simulation solid-state wave gyroscope resonator. Intelligent Systems in Manufacturing, 2017, vol. 15, no. 3, pp. 4--17 (in Russ.). DOI: http://dx.doi.org/10.22213/2410-9304-2017-3-4-17

[5] Bryan G.H. On the beats in the vibrations of a revolving cylinder or bell. Proc. Camb. Phil. Soc. Math. Phys. Sci., 1890, vol. 7, pp. 101--111.

[6] Pytyev Yu.P. Metody matematicheskogo modelirovaniya izmeritel’no-vychislitel’nykh system [Mathematical modelling methods for measurement and calculation systems]. Moscow, FIZMATLIT Publ., 2004.

[7] Atsyukovskiy V.A. Emkostnye preobrazovateli peremeshcheniya [Capacity displacement transducers]. Moscow, Leningrad, Energiya Publ., 1966.

[8] Zhuravlev V.F., Linch D.D. Electrical model of hemispherical resonator gyro. Izv. RAN. MTT, 1995, no. 5, pp. 12--24 (in Russ.).

[9] Matveev V.A., Lipatnikov V.I., Alekhin A.V. Proektirovanie volnovogo tverdotel’nogo giroskopa [Engineering of hemispherical resonator gyroscope]. Moscow, BMSTU Publ., 1997.

[10] Jackson R.G. Novel sensors and sensing. CRC Press, 2004.

[11] Trutnev G.A. Scale factor nonlinearity of hemispherical resonator gyro. Intelligent Systems in Manufacturing, 2018, vol. 16, no. 4, pp. 138--144 (in Russ.). DOI: http://dx.doi.org/10.22213/2410-9304-2018-4-138-144

[12] Trutnev G.A., Nazarov S.B., Perevozchikov K.K., et al. Recalibration of hemispherical resonator gyro biases. Bulletin of Kalashnikov ISTU, 2018, vol. 21, no. 3, pp. 198--204 (in Russ.). DOI: http://dx.doi.org/10.22213/24131172-2018-3-198-204

[13] Zhuravlev V.F. Van der Pol’s controlled 2D oscillator. Russian Journal of Nonlinear Dynamics, 2016, vol. 12, no. 2, pp. 211--222 (in Russ.). DOI: https://doi.org/10.20537/nd1602004

[14] Zhuravlev V.F. Hemispherical resonator gyro with m data electrodes and n control electrodes. Mech. Solids, 2015, vol. 50, iss. 4, pp. 375--378. DOI: https://doi.org/10.3103/S0025654415040020

[15] Lee J., Yun S.W., Rhim J. Design and verification of a digital controller for a 2-piece hemispherical resonator gyroscope. Sensors, 2016, vol. 16, iss. 4, pp. 555--577. DOI: https://doi.org/10.3390/s16040555