|

Choosing Damping Parameters for the Inertial Orientation System

Authors: Podchezertsev V.P., Topilskaya S.V. Published: 11.09.2021
Published in issue: #3(136)/2021  
DOI: 10.18698/0236-3933-2021-3-113-128

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Navigation Instruments  
Keywords: gyroscopic device, dynamic vibration damper, system of shock absorption

The article discusses criteria for selecting the vibration protection for the spacecraft inertial orientation system. The considered vibration protection system allows providing acceptable amplitude acceleration for the gyroscopic device sensitive elements under vibration impact on the device body during the spacecraft launching and high angular stability of the position of the sensitive elements relative to the inertial coordinate system during a long period of operation (15 years) in orbit. The proposed vibration protection system consists of shock absorbers (springs) with stable high elastic characteristics under all factors of operation in the outer space and dynamic vibration dampers. The article presents a method for determining the parameters of dynamic vibration dampers taking into account the characteristics of the shock absorber, critical for the damping system of an inertial device. The proposed method for adjusting dynamic vibration dampers consists in suppressing vibrations at the natural frequency f1 of the shock absorption system and providing acceptable values of the gain coefficients of the structure resonant vibration amplitudes near the natural frequency f1. Certain characteristics of the damping system allow realizing the permissible vibration amplification coefficients at resonance, without significantly affecting the level of vibration suppression in the natural frequency zone of the vibration protection object

References

[1] Gushchin V.N. Osnovy ustroystva kosmicheskikh apparatov [Fundamentals of spacecraft construction]. Moscow, Mashinostroenie Publ., 2003.

[2] Bakulin Ya.Yu., Zhuravlev V.Yu. Vibrotests of rocket and space technology products. Reshetnevskie chteniya, 2014, vol. 1, no. 18, pp. 123--124 (in Russ.).

[3] Topilskaya S.V., Borodulin D.S., Kornyukhin A.V. Experimental estimation of allowable mechanical impact on dynamically adjusted gyroscope. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2018, no. 4, pp. 69--79 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2018-4-69-79

[4] Topilskaya S.V., Borodulin D.S., Kornyukhin A.V. Protecting modern compact gyroscopic angular rate measurement from mechanical influence. Sibirskiy zhurnal nauki i tekhnologiy [Siberian Journal of Science and Technology], 2018, vol. 19, no. 2, pp. 332--343 (in Russ.).

[5] Khomenko A.P., Eliseev S.V. Some properties of dynamical absorption of vibration in mechanical systems. Sovremennye tekhnologii. Sistemnyy analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2015, no. 2, pp. 8--19 (in Russ.).

[6] Topilskaya S.V., Borodulin D.S., Kornyukhin A.V. Issues of small gyroscopic angular velocity sensor protection from external mechanical impacts. Trudy FGUP "NPTsAP" Sistemy i pribory upravleniya, 2018, no. 4, pp. 23--24 (in Russ.).

[7] Lysenko A.V., Tan’kov G.V., Kalashnikov V.S., et al. The algorithm of realization of adaptive system vibration testing of the onboard avionics. Nadezhnost’ i kachestvo slozhnykh system [Reliability & Quality of Complex Systems], 2019, no. 2, pp. 60--69 (in Russ.). DOI: https://doi.org/10.21685/2307-4205-2019-2-7

[8] Serov M.V., Aver’yanova G.M., Aleksandrova S.G. Experience of using vibration theory to practical issues of application of inertial dynamic vibration absorbers. Izvestiya MGTU MAMI, 2013, vol. 3, no. 1, pp. 118--124 (in Russ.).

[9] Shermukhamedov U.Z., Kuznetsova I.O. Influence of adjustment accuracy of dynamic dampers of fluctuations on seismic stability of bridges. Vestnik Dnepropetrovskogo natsional’nogo universiteta zheleznodorozhnogo transporta, 2012, no. 41, pp. 175--180 (in Russ.).

[10] Dukart A.V. Optimal parameters and efficiency of a single-mass dynamic vibration damper with viscous friction at a periodic disturbing load of the "Rectangular sine" type. Vestnik MGSU, 2009, no. 4, pp. 92--101 (in Russ.).

[11] Semenov V.S., Veremenko T.V. Combined dynamic vibration damper of buildings and structures of torsion type. Sovremennye tendentsii razvitiya nauki i tekhnologiy, 2015, no. 6-6, pp. 109--113 (in Russ.).

[12] Pavlov Yu.N., Nedashkovskiy V.M., Tikhomirova E.A., et al. Identification parameters of the dynamic damper of vibrations. Dinamika slozhnykh sistem --- XXI vek [Dynamics of Complex Systems --- XXI Century], 2018, vol. 12, no. 1, pp. 46--51 (in Russ.).

[13] Yao H., Chen Z., Wen B. Dynamic vibration absorber with negative stiffness for rotor system. Shock. Vib., 2016, vol. 2016, art. 5231704. DOI: https://doi.org/10.1155/2016/5231704

[14] Rezaee M., Fathi R. A new design for automatic ball balancer to improve its performance. Mech. Mach. Theory, 2015, vol. 94, pp. 165--176. DOI: https://doi.org/10.1016/j.mechmachtheory.2015.08.008

[15] Silvagni M., Tonoli A., Bonfitto A. Self-powered eddy current damper for rotordynamic applications. J. Vib. Acoust., 2015, vol. 137, no. 1, pp. 130--139. DOI: https://doi.org/10.1115/1.4028228

[16] Павлов Ю.Н., Недашковский В.М., Тихомирова Е.А. и др. Метод гармонической линеаризации в задаче идентификации нелинейных динамических систем. Наука и образование: научное издание МГТУ им. Н.Э. Баумана, 2014, № 4, с. 382--397. DOI: 10.7463/0414.0704613

[17] Zel’dovich Ya.B., Myshkis A.D. Elementy prikladnoy matematiki [Elements of applied mathematics]. Moscow, Lenand Publ., 2017.

[18] Kazakova O.I., Smolin I.Yu., Bezmozgiy I.M. Analysis of amplitude-dependent damping and its application in numerical calculations. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika [Tomsk State University Journal of Mathematics and Mechanics], 2018, no. 54, pp. 66--78 (in Russ.).

[19] Shorr B.F., Serebryakov N.N. Numerical-experimental analysis of amplitude-dependent damping performances in components and materials. J. Mach. Manuf. Reliab., 2011, vol. 40, no. 3, pp. 272--279. DOI: https://doi.org/10.3103/S1052618811020166