|

Using Remote Laser Technique in Measuring Oil Film Thickness on Water Surface in the Eye-Safe Spectral Range

Authors: Belov M.L., Kopysova T.I., Gorodnichev V.A. Published: 05.06.2020
Published in issue: #2(131)/2020  
DOI: 10.18698/0236-3933-2020-2-85-97

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Optical and Optoelectronic Instruments and Complexes  
Keywords: laser remote method, water surface, oil film, thickness measurement

Possibilities were studied of using a remote laser spectrophotometric method in measuring thickness of oil films on a wavy water surface with utilization of discretely tunable laser source operating at eye-safe narrow spectral range around ~ 2.1 μm. Laser spectrophotometric method is based on measuring reflection coefficient of the water surface on five probing wavelengths and finding thickness of the oil film by the quasisolution search method. It is proposed to use an optical parametric generator tunable along a wavelength in the 1.5--2.6 μm spectral range as a radiation source. Results of mathematical simulation are provided for the optical characteristics of typical oil and pure sea water with a mean square value of measurement noise of 1, 2 and 3 %. Results of mathematical simulation demonstrate that remote laser spectrophotometric method based on the quasisolution selection technique makes it possible to measure oil films with a thickness from several micrometers to ~ 130 μm with an error of no more than 30 % for measurements with noise mean sguare error of 1--3 %

References

[1] Nemirovskaya I.A. Neft’ v okeane (zagryaznenie i prirodnye potoki) [Oil in the ocean (pollution and natural flow)]. Moscow, Nauchnyy mir Publ., 2013.

[2] Chernogaeva G.M., ed. Obzor sostoyaniya i zagryazneniya okruzhayushchey sredy v Rossiyskoy Federatsii za 2017 god [Review of environment state and pollution in Russian Federation in 2017 year]. Moscow, Rosgidromet Publ., 2018.

[3] Measures R. Laser remote sensing: fundamentals and applications. Wiley, 1984.

[4] Monin A.S., Krasitskiy V.P. Yavleniya na poverkhnosti okeana [Phenomena on the ocean surface]. Leningrad, Gidrometeoizdat Publ., 1985.

[5] Matishev G.G., Nikitin B.A., Sochnev O.Ya. Ekologicheskaya bezopasnost’ i monitoring pri osvoenii mestorozhdeniy uglevodorodov na arkticheskom shel’fe [Ecological safety and monitoring at opening of fossil fuels deposits on arctic shelf]. Moscow, Gazoil press Publ., 2001.

[6] Rozhdestvin V.N., ed. Optiko-elektronnye sistemy ekologicheskogo monitoringa prirodnoy sredy [Optoelectronic systems of environment ecologic monitoring]. Moscow, Bauman MSTU Publ., 2002.

[7] Essahlaou A., Essaoudi H., Hallaoui A., et al. Calculation of the thickness and optical constants of lead titanate thin films grown on MgO from their transmission spectra. J. Mater. Environ. Sc., 2018, vol. 9, no. 1, pp. 228--234. DOI: https://doi.org/10.26872/jmes.2018.9.1.26

[8] Nestler P., Helm C.A. Determination of refractive index and layer thickness of nm-thin films via ellipsometry. Opt. Express, 2017, vol. 25, no. 22, pp. 27077--27085. DOI: https://doi.org/10.1364/OE.25.027077

[9] Kavitha B., Dhanam M. Determination of optimum film thickness and composition of Cu(InAl)Se2 thin films as an absorber for solar cell applications. WJNSE, 2011, vol. 1, no. 4, pp. 108--118. DOI: http://dx.doi.org/10.4236/wjnse.2011.14017

[10] Jussila H., Albrow-Owen T., Yang H., et al. New approach for thickness determination of solution-deposited graphene thin films. ACS Omega, 2017, vol. 2, no. 6, pp. 2630−2638. DOI: https://doi.org/10.1021/acsomega.7b00336

[11] Whiteside J.D., Chininis J.A., Hunt H.K. Techniques and challenges for characterizing metal thin films with applications in photonics. Coatings, 2016, vol. 6, no. 3, art. 35. DOI: https://doi.org/10.3390/coatings6030035

[12] Wang M.-D., Zhu D.-Y., Liu Y., et al. Determination of thickness and optical constants of ZnO thin films prepared by filtered cathode vacuum arc deposition. Chin. Phys. Lett., 2008, vol. 25, no. 2, pp. 743--746. DOI: https://doi.org/10.1088/0256-307X/25/2/106

[13] Nenkov M.R., Pencheva T.G. Determination of thin film refractive index and thickness by means of film phase thickness. Cent. Eur. J. Phys., 2008, vol. 6, no. 2, pp. 332--343. DOI: https://doi.org/10.2478/s11534-008-0035-z

[14] Lamminpaa A., Nevas S., Manoocheri F., et al. Characterization of thin film based on reflectance and transmittance measurements at oblique angles of incidence. Appl. Opt., 2006, vol. 45, no. 7, pp. 1392--1396. DOI: https://doi.org/10.1364/AO.45.001392

[15] Qieni L., Lin L., Baozhen G., et al. Differential laser trigonometry for measuring the oil film thickness on water. J. Mod. Opt., 2012, vol. 59, no. 11, pp. 947--953. DOI: https://doi.org/10.1080/09500340.2012.683825

[16] Baozhen G., Jingbin S., Pengcheng L., et al. Designing an optical setup of differential laser triangulation for oil film thickness measurement on water. Rev. Sc. Instrum., 2013, vol. 84, no. 1, art. 013105. DOI: https://dx.doi.org/10.1063%2F1.4788937

[17] Fingas M., Brown C. Review of oil spill remote sensing. Mar. Pollut. Bull., 2014, vol. 83, no. 1, pp. 9--23. DOI: https://doi.org/10.1016/j.marpolbul.2014.03.059

[18] Fingas M., Brown C.E. Oil spill remote sensing: a review. In: Oil spill science and technology. Gulf Publ. Co., 2011, pp. 111--169.

[19] Drozdowska V. Estimation of the oil film thickness on the water surface by the lidar method. III Physicochemical Problems of Natural Waters Ecology. Vol. III, 2005, pp. 15--23.

[20] Sergievskaya I., Ermakov S. Oil films detection on the sea surface using an optical remote sensing method. Proc. SPIE, 2012, vol. 8532. DOI: https://doi.org/10.1117/12.974395

[21] Sun S., Hu C. Sun glint requirement for the remote detection of surface oil films. Geophys. Res. Lett., 2016, vol. 43, no. 1, pp. 309--316. DOI: https://doi.org/10.1002/2015GL066884

[22] Dolenko T.A., Fadeev V.V., Gerdova I.V., et al. Fluorescence diagnostics of oil pollution in coastal marine waters by use of artificial neural network. Appl. Opt., 2002, vol. 41, no. 24, pp. 5155--5166. DOI: https://doi.org/10.1364/AO.41.005155

[23] Kozintsev V.I., Belov M.L., Gorodnichev V.A., et al. Lidar method of oil pollution detection on rough sea surface. Proc. SPIE, 2005, vol. 5829. DOI: https://doi.org/10.1117/12.617521

[24] Bukin O.A., Proshchenko D.Yu., Chekhlenok A.A., et al. Methods for optical monitoring of oil pollution of sea water basins using unmanned aerial vehicles. Atmos. Ocean. Opt., 2019, vol. 32, no. 4, pp. 459--463. DOI: https://doi.org/10.1134/S102485601904002X

[25] Berezin S.V. Razrabotka distantsionnogo lazernogo izmeritelya tolshchiny neftyanykh plenok na vzvolnovannoy morskoy poverkhnosti. Dis. kand. tekh. nauk [Development of remote laser sensor for oil film thickness on rough sea surface. Cand. Sc. (Eng.) Diss.]. Moscow, Bauman MSTU Publ., 2006.

[26] Kozintsev V.I., Belov M.L., Gorodnichev V.A., et al. Laser method for remote control for oil film thickness on rough sea surface based on transmissivity determination. Optika atmosfery i okeana, 2007, vol. 20, no. 4, pp. 338--340 (in Russ.).

[27] Kozintsev V.I., Belov M.L., Gorodnichev V.A., et al. Laser method of remote control for oil film thickness on rough sea surface based on determination of phase shear difference in the film for sounding wavelengths. Optika atmosfery i okeana, 2007, vol. 20, no. 10, pp. 932--935 (in Russ.).

[28] Kozintsev V.I., Belov M.L., Orlov V.M., et al. Osnovy impul’snoy lazernoy lokatsii [Fundamentals of pulse laser location]. Moscow, Bauman MSTU Publ., 2010.

[29] Gurevich I.Ya., Shifrin K.S. Otrazhenie vidimogo i IK-izlucheniya neftyanymi plenkami na more [Visible and IR radiation reflection by oil film on sea]. V: Opticheskie metody izucheniya okeanov i vnutrennikh vodoemov [In: Optical research techniques for oceans and inland water reservoirs]. Novosibirsk, Nauka Publ., 1979, pp. 166--176 (in Russ.).

[30] Corbett J., Woods M. UV laser radiation: skin hazards and skin protection controls. Int. Laser Safety Conf., 2013, paper 303.

[31] Rothman L.S., Gordon I.E., Barbe A., et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 2009, vol. 110, no. 9-10, pp. 533--572.

[32] OPO SERIES. nanointek.ru: website. Available at: http://www.nanointek.ru/assets/files/OPO.pdf (accessed: 02.12.2015).

[33] Voskoboynikov Yu.E., Preobrazhenskiy N.G., Sedel’nikov A.N. Matematicheskaya obrabotka eksperimenta v molekulyarnoy gazodinamike [Mathematical processing of molecular gas dynamics experiment]. Novosibirsk, Nauka Publ., 1984.

[34] Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach [Methods for solving incorrect problems]. Moscow, Nauka Publ., 1979.