Analysis of Interferometer with Micro-Mirror on Beam Splitting Cube

Authors: Timashova L.N., Kulakova N.N. Published: 11.09.2021
Published in issue: #3(136)/2021  
DOI: 10.18698/0236-3933-2021-3-129-143

Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Optical and Optoelectronic Instruments and Complexes  
Keywords: interferometer, interference pattern, fringe, cube-prism, spherical mirror, matrix radiation detector, wavefront, defocusing, laser

The control of the shape of the optical part surface by the interference method has become an integral part of the process of their shaping. With a precisely focused interferometer interferometry allows obtaining an interference pattern similar to a topographic map of the error profile of the wave surface under investigation. The interferometer must form a map of the optical surface with high accuracy --- the permissible distortion of the interference fringe caused by an interferometer error should not exceed 0.1 of the distortion value caused by an error on the examined surface. The dependence of the interference pattern formation on the errors in the arrangement of the interferometer components, i.e., defocusing, was theoretically analyzed using Fourier transforms. The analysis was performed for an interferometer containing a laser illuminator, a concave spherical mirror with a central hole, coaxial to the illuminator, and a beamsplitting element in the form of a cube-prism with a semitransparent hypotenuse face. On the first flat face of the cube-prism, a microspherical concave mirror is made with the center located on the optical axis of the interferometer. A method for calculating the defocusing of a controlled spherical mirror and the corresponding wave aberration of the working wavefront is presented. An example of calculating the design parameters of the interferometer and the permissible defocusing of the controlled spherical mirror is given


[1] Krivovyaz L.M., Puryaev D.T., Znamenskaya M.A. Praktika opticheskoy izmeritel’noy laboratorii [Practice of an optical laboratory]. Moscow, Mashinostroenie Publ., 2004.

[2] Kreopalova G.V., Puryaev D.T. Issledovanie i kontrol’ opticheskikh system [Reserch and control on optical systems]. Moscow Mashinostroenie Publ., 1978.

[3] Kreopalova G.V., Lazareva N.L., Puryaev D.T. Opticheskie izmereniya [Optical measurements]. Moscow Mashinostroenie Publ., 1987.

[4] Malacara D. Optical shop testing. Wiley, 1978.

[5] Andreev A.N., Gavrilov E.V., Ishanin G.G., et al. Opticheskie izmereniya [Optical measurements]. Moscow, Logos Publ., 2008.

[6] Kirillovskiy V.K. Opticheskie izmereniya. Teoriya chuvstvitel’nosti opticheskikh izmeritel’nykh navodok. Rol’ opticheskogo izobrazheniya [Optical measurements. Responsivity theory of optical measurement adjustment. The role of an optical image]. St. Petersburg, GITMO (TU) Publ., 2003.

[7] Schroder G., Treiber H. Technische optik. ‎Wurzburg, Vogel Buchverlag, 2002.

[8] Mishin S.V., Kulakova N.N., Tirasishin A.V. Adaptation of the algorithm for searching the coordinates of the energy centre in the image of an autocollimating point for working with digital autocollimator. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2016, no. 2, pp. 117--124 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2016-2-117-124

[9] Timashova L.N., Kulakova N.N., Sazonov V.N. Opto-electronic system for measurement of spherical aberration. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2018, no. 6, pp. 112--122 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2018-6-112-122

[10] Kulakova N.N., Kaledin S.B., Sazonov V.N. Error analysis of IR lens focal length measured by a goniometric method. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 2017, no. 4, pp. 17--26 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2017-4-17-26

[11] Mosyagin G.M., Nemtinov V.B., Lebedev E.N. Teoriya optiko-elektronnykh system [Theory of optic-electronic systems]. Moscow, Mashinostroenie Publ., 1990.

[12] Yakushenkov Yu.G. Proektirovanie optiko-elektronnykh priborov [Design of optic-electronic systems]. Moscow, Logos Publ., 1999.

[13] Yakushenkov Yu.G. Teoriya i raschet optiko-elektronnykh priborov [Theory and calculation of optic-electronic systems]. Moscow, Logos Publ., 2011.

[14] Korotaev V.V. Raschet shumovoy pogreshnosti optiko-elektronnykh priborov [Noise error calculation for optic-electronic systems]. St. Petersburg, NIU ITMO Publ., 2012.

[15] Zakaznov N.P., Kiryushin S.I., Kuzichev V.I. Teoriya opticheskikh system [Theory of optical systems]. St. Petersburg, Lan Publ., 2008.