|

Laser method for detecting leakage from petroleum pipelines

Authors: Fedotov Yu.V., Matrosova O.A., Belov M.L., Gorodnichev V.A. Published: 13.09.2013
Published in issue: #3(92)/2013  
DOI:

 
Category: Laser and opto-electronic systems  
Keywords: petroleum pipeline, laser, fluorescence spectra, oil pollution, earth’s surface, detection

Now-existing systems for leakage monitoring at petroleum pipelines provide the registration of large leakages and have a sensitivity limit of around 1% of the pipeline performance. A problem is discussed concerning the remote detection of low intensity (less than 1 %) leakages from pipelines. One of variants of the system for remote pipeline-leakage detection is the system of oil pollution monitoring over the earth's surface along the petroleum pipeline track. The fluorescence spectra of pure petroleum products (crude oil, light and heavy oil products), different ground surfaces (soil, vegetation, water, and asphalt), and oil products spilled over different earth's surfaces are given, which were obtained experimentally for the excitation wavelength of 266 nm. It is shown that the use of the laser method based on registration of fluorescence emission in three narrow spectral regions enables the oil pollutions to be revealed on the earth's surface with a probability of correct detection close to unity at a small probability of false alarms.

References

[1] Patin S.A. Neft’ i ekologiya kontinental’nogo shel’fa [Oil and ecology of the continental shelf]. Moscow, VNIRO Publ., 2001. 247 p.

[2] Drugov Yu.S., Rodin A.A. Ekologicheskie analizy pri razlivakh nefti i nefteproduktov [Environmental analyzes of oil and oil products spills]. Moscow, BINOM Publ., 2007. 270 p.

[3] Vasil’eva N. Utechki nefti v Rossii nanosyat nepopravimyy ushcherb [Oil spills in Russia cause irreparable damage]. Available at: http://www.inosmi.ru/russia/20111218/180661918.html (accessed 1 June 2012).

[4] Suprunchik V.V. Bezopasnost’ truboprovodnogo transporta uglevodorodov [Safety of pipeline transportation of hydrocarbons]. Available at: http://www.geoim.ru/content/view/535/278 (accessed 1 June 2012).

[5] Measures R.M. Laser remote sensing. New York, Wiley, 1984. 510 p. (Russ. ed.: Mezheris R. Lazernoe distantsionnoe zondirovanie. Moscow, Mir Publ., 1987. 550 p.).

[6] Klimkin V.M., Sokovikov V.G., Fedorishchev V.N. New possibilities for remote analysis of oil products on water surface. Atmos. Oceanic Opt., 1993, vol. 6, no. 2, pp. 189-204.

[7] Belov M.L., Gorodnichev V.A., Kozintsev V.I., Fedotov Yu.V., Smirnova O.A., Khrustaleva A.M. Detection of oil spills on the sea surface by the dual-frequency remote laser method. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Priborostr. [Herald of the Bauman Moscow State Tech. Univ. Ser. Instrum. Eng.], 2006, no. 4, pp. 3-12 (in Russ.).

[8] Fedotov Yu.V., Belov M.L., Matrosova O.A., Gorodnichev V.A., Kozintsev V.I. The method of detection of oil spills on the water surface based on registering fluorescent radiation in two narrow spectrum bands. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Priborostr. [Herald of the Bauman Moscow State Tech. Univ. Ser. Instrum. Eng.], 2010, no. 2, pp. 39-47 (in Russ.).

[9] Belov M.L., Belov A.M., Gorodnichev V.A., Kozintsev V.I. Laser method of control for thin oil films on water surface based on measurement of first-order and second-order derivatives of reflection coefficient. Atmos. Oceanic Opt., 2011, vol. 24, no. 7, pp. 568-571.

[10] Fedotov Yu.V., Matrosova O.A., Belov M.L., Gorodnichev V.A., Kozintsev V.I. Experimental research of fluorescent spectrums of natural formations and oil pollution. Nauka Obraz. MGTU im. N.E. Baumana. Elektron. Zh. [Sci. Educ. Bauman Moscow State Tech. Univ. Electron. J.], 2011, no. 11 (in Russ.). Available at: http://technomag.edu.ru/doc/256187.html (accessed 1 Oct. 2012).

[11] Patsayeva S., Yuzhakov V., Lamotte M., Fantoni R., Lai A., Palucci A. Variation of the UV-to-blue fluorescence ratio for organic matter in water under conditions of fluorescence. Proc. EARSeL-SIG-Workshop LIDAR. Dresden, 2000, pp. 157-164.

[12] Middleton E.M., McMurtrey III J.E., Entcheva Campbell P.K., Corp L.A., Butcher L.M., Chappelle E.W. Optical and fluorescence properties of corn leaves from different nitrogen regimes. Proc. SPIE, 2003, vol. 4879, pp. 72-83. doi: 10.1117/12.463087

[13] Glushkov S.M., Fadeev V.V., Filippova E.M., Chubarov V.V. Problems of laser fluorometry of organic admixtures in natural water. Atmos. Oceanic Opt., 1994, vol. 7, no. 4, pp. 231-238.

[14] Orlov V.M., Samokhvalov I.V., Belov M.L., Shamanaev V.S., Klinkin V.M., Belokhvostikov A.V., Penner I.E., Safin R.G., Yudovskiy A.B. Distantsionnyy kontrol’ verkhnego sloya okeana [Remote control of the upper ocean]. Novosibirsk, Nauka Publ., 1991. 149 p.

[15] Vlasov D.V., Tsipenyuk D.Yu., Vartapetov S.K., Bukreev V.S., Obidin A.Z. Investigation of the possibility of using an excimer KR-F laser in lidar experiments on detection of oil films on a water surface. Atmos. Oceanic Opt., 1990, vol. 3, no. 11, pp. 1224-1225.

[16] Sivaprakasam V., Killinger D.K. Tunable ultraviolet laser-induced fluorescence detection of trace plastics and dissolved organic compounds in water. Appl. Opt., 2003, vol. 42, no. 33, pp. 6739-6746. http://dx.doi.org/10.1364/AO.42.006739

[17] Patsayeva S., Yuzhakov V., Fadeev V.V. Fluorescent diagnostics of oil pollutions oil in film and dispersed in water body. EARSeL Adv. Remote Sens, 1995, vol. 3, no. 3, pp. 170-178.

[18] Karpicza R. Laser fluorosensor for oil spot detection. Lith. J. Phys., 2005, vol. 45, no. 3, pp. 213-218.

[19] Deidan T.A., Patsaeva S.V., Fadeev V.V., Yuzhakov V.I. Specific features of the fluorescence spectra of oil products. Atmos. Oceanic Opt., 1994, vol. 7, no. 4, pp. 242245.

[20] Lohmannsroben H.-G., Schober L. Combination of laser-induced fluorescence and diffuse-reflectance spectroscopy for the in situ analysis of Diesel-fuel-contaminated soils. Appl. Opt., 1999, vol. 38, no. 9, pp. 1404-1410.