|

Algorithm of Active Damping of Elastic Oscillations of the International Space Station Construction

Authors: Timakov S.N., Zhirnov A.V. Published: 23.05.2014
Published in issue: #3(96)/2014  
DOI:

 
Category: Control Systems  
Keywords: attitude control, active damping, adaptive observer, stability, convergence

At the present time the Russian segment thrusters are used for attitude maneuvers of the International Space Station (ISS). Since these thrusters operate in a pulse mode, each turning on and turning off induce oscillations of the ISS construction. As dimensions of the station increase and hence its stiffness reduces, these oscillations become significant and lead to exceeding the permissible loads. To solve this problem, active damping of the elastic oscillations using attitude control thrusters is proposed. The analysis of convergence of estimates in the identification algorithm is given, and problems ofstability of the active damping algorithm are considered.

References

[1] Ermilov A.S., Ermilova T.V., Rutkovskiy V.Yu., Sukhanov V.M. Two-level control system of orientation of flexible spacecrafts with active stabilization of structural elastic oscillations. Avtom. Telemekh. [Autom. Remote Control], 2008, no. 6, pp. 2640 (in Russ.).

[2] Ermilov A.S., Ermilova T.V. A mathematical model for the angular motion of large space structures with gyroscopic drive for an active compensation of elastic oscillations. Doklady Mathematics [Dokl. Math., 2011, vol. 83, iss. 1, pp. 136-139], 2011, vol. 436, no. 6, pp. 743-746 (in Russ.).

[3] Legostaev V.P., Subbotin A.V., Timakov S.N., Zykov A.V. Study of the dynamics of control angular motion of the spacecraft with a rotating solar sail. Tr. Moskovskogo fiziko-tekhn. inst. MIPT (SU) [Proc. Moscow Inst. Ph. Techn. (State University)], 2013, vol. 5, no. 2, pp. 106-119 (in Russ.).

[4] Zubov N.E., Mikrin E.A., Misrikhanov M.Sh., Ryabchenko V.N., Timakov S.N. The use of an adaptive bandpass filter as an observer in the control loop of the international space station. Izv. Rossiyskoy akad. nauk. Teoriya i sistemy upravleniya [J. Comp. and Systems Sc. Int., vol. 51, iss. 4, pp. 560-572], 2012, no. 4, pp. 88-100 (in Russ.).

[5] Kolesnikov K.S. Dinamika raket [Rocket dynamics]. Moscow, Mashinostroenie Publ., 2003. 520 p.

[6] Branets V.N., Shmyglevskiy I.P. Vvedenie v teoriyu besplatformennykh inertsial’nykh navigatsionnykh system [Introduction to Theory of Strapdown Inertial Navigation Systems]. Moscow, Nauka Publ., 1992. 278 p.

[7] Eykhoff P. System identification: parameter and state estimation. Chichester, England, London, J. Wiley, 1974. 555 p. (Russ. Ed.: Eykkhoff P Osnovy identifikatsii sistem upravleniya. Moscow, Mir Publ., 1975. 680 p.).

[8] Kwakernaak H., Sivan R. Linear Optimal Control Systems. NY., Wiley-Interscience. 1972. 22 p. (Russ. Ed.: Kvakernaak Kh., Sivan R. Lineynye optimal’nye sistemy upravleniya. Moscow, Mir Publ., 1977. 650 p.).

[9] Kuzovkov N.T. Modal’noe upravlenie i nablyudayushchie ustroystva [Modal control and watching devices]. Moscow, Mashinostroenie Publ., 1976. 184 p.

[10] Voronov A.A. Ustoychivost’, upravlyaemost’, nablyudaemost’ [Stability, controllability, observability]. Moscow, Nauka Publ., 1979. 336 p.