|

Sequential Closing Method for Modes of Movement for Multidimensional, Multilinked Dynamical Systems

Authors: Timakov S.N., Bogdanov K.A., Nefedov S.E. Published: 04.10.2014
Published in issue: #5(98)/2014  
DOI:

 
Category: Control Systems  
Keywords: poles placement problem, multidimensional and multilinked dynamical system, synthesis of algorithms control of spacecraft motion

Currently one of the fastest growing areas of applied control theory is the development of analytical and numerical methods of modal control by roots of multidimensional dynamical systems by means close loop of multilinked feedbacks. Interest to the problem of modal placement poles of close loop dynamical system and to the calculation of the components of feedback matrix as well as the coefficients of feedback matrix hasn’t been decreasing already for several decades. In this paper a method of modal control by roots of the characteristic polynomial of multilinked systems, based on the principle of sequential closing is proposed. Detailed description of the closing algorithm and the calculating both feedback matrices and matrices of weight coefficients for problems of control definition with incomplete composition of measurements is carried out. Efficiency of the algorithm has been demonstrated using the problem of synthesis of algorithms control of spacecraft motion with double rotation (rolling solar sail with compensating gyro) and the other problem of seeking and maintaining the equilibrium attitude position of the International Space Station.

References

[1] Ackermann J. Der entwurf linearer regelungssysteme im zustandsraum. Regelungstechnik und Prozessdatenverarbeitung, 1972, vol. 7, pp. 297-300.

[2] Mayne D.Q., Murdoch P. Modal control of linear time invariant systems. Int. J. Control, 1970, vol. 11, no. 2, pp. 223-227.

[3] Maki M.C., Van de Vegte J. Optimization of multiple-input systems with assigned poles. I.E.E.E. Trans. autom. Control, 1974, vol. 19, no. 2, pp. 130-133.

[4] Barnett S. Introduction to Mathematical Control Theory. Oxford University Press, 1975, 264 p.

[5] Gourishankar V., Ramar K. Pole assignment with minimum eigenvalue sensitivity to plant parameter variations. Int. J. Control, 1976, vol. 23, no. 4, pp. 493-504.

[6] Moore B.C. On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment. I.E.E.E. Trans. autom. Control, 1976, vol. 21, no. 5, pp. 689-692.

[7] Klein G., Moore B.C. Eigenvalue-generalized eigenvector assignment with state feedback. I.E.E.E. Trans. autom. Control, 1977, vol. 22, no. 1, pp. 140-141.

[8] Porter B., D’Azzo J.J. Closed-loop eigenstructure assignment by state feedback in multivariable linear systems. Int. J. Control, 1978, vol. 27, no. 6, pp. 487-492.

[9] Wonham W.M. Linear Multivariable Control: A Geometric Approach. 2nd ed. New York, Springer, 1979. 322 p.

[10] Flamm D.S. A new proof of Rosenbrock’s theorem on pole assignment // I.E.E.E. Trans. autom. Control, 1980, vol. 25, p. 1128-1133.

[11] Varga A. A Schur method for pole assignment. I.E.E.E. Trans. autom. Control, 1981, vol. 26, no. 2, pp. 517-519.

[12] Fahmy M.M., O’Reilly J. On eigenstructure assignment in linear multivariable systems. I.E.E.E. Trans. Autom. Control, 1982, vol. 27. no. 3, pp. 690-693.

[13] Kautsky J., Nichols N. K., Van Dooren P.. Robust pole assignment in linear state feedback. Int. J. Control, 1985, vol. 41, no. 5, pp. 1129-1155.

[14] Kvakernaak Kh., Sivan R. Linear optimal control systems. Wiley-Interscience, New-York, 1972. (Russ. ed.: Kvakernaak Kh., Sivan R. Lineynye optimal’nye sistemy upravleniya. Moscow, Mir Publ., 1977. 650 p.)

[15] Legostaev V.P., Subbotin A.V., Timakov S.N., Cheremnykh E.A. Natural oscillations of a rotating membrane with a central rigid insert (use of Heun function) Prikladnaja matematika i mehanika [J. Appl. Math. Mech.], 2001, vol. 75, iss. 2, pp. 224-238 (in Russ.).

[16] Legostaev V.P., Subbotin A.V., Timakov S.N., Zykov A.V. Study of the dynamics of controlled angular motion of spacecraft with rotating solar sail. Trudy Moskovskogo fiziko-tekhn. inst. MIPT (SU) [Proc. of the Moscow Inst. Ph. Techn. (State University)], 2013, no. 2, pp. 106-119 (in Russ.).

[17] Beletskiy V.V. Dvizhenie iskusstvennogo sputnika otnositel’no tsentra mass. [Motion of satellite vehicle with respect to the center of mass]. Moscow, Nauka Publ., 1965. 416 p.

[18] Kuzovkov N.T. Modal’noe upravlenie i nablyudayushchie ustroystva. [Modal control and monitoring devices] Moscow, Mashinostroenie Publ., 1976, 184 p.

[19] Branets V.N., Shmyglevskiy I.P. Primenenie kvaternionov v zadachakh orientatsii tverdogo tela. [Applying of quaternions in problems of orientation of solid]. Moscow, Nauka Publ., 1973. 320 p.

[20] Timakov N.S. Study of controlled angular motion of spacecraft on highly elliptical orbit. Tr. IXKonf. molodykh uchenykh "Navigatsiya i upravlenie dvizheniem". [Proc. IX Conf. of young scientists "Navigation and motion control"], St. Petersburg, 2007, pp. 330-336 (in Russ).