Evaluation of Dielectric Permittivity of Composite with Dispersed Inclusions

Authors: Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Published: 17.06.2015
Published in issue: #3(102)/2015  
DOI: 10.18698/0236-3933-2015-3-50-64

Category: Physics | Chapter: Electrophysics, Electrophysical Devices  
Keywords: composite, dispersed inclusions, dielectric permittivity

The article discusses the sequential estimation of dielectric permittivity of a composite with dispersed inclusions. The estimation process starts with using the variational formulation of the electrostatics problem for isotropic continuous medium and it finishes by applying the theory of blenders. The variational approach allows both performing two-sided estimates of the true value of dielectric permittivity for a composite and finding the maximum possible error of the value, which corresponds to the half-sum of the calculated estimates. The proposed mathematical model of the representative element of the composite structure causes the computational correspondence, which coincides with the formulae for magnetic permittivity and thermal conductivity of heterogeneous bodies, to an accuracy of notations. This fact can be considered as an explicit confirmation of the model adequacy. The presented estimates allow predicting effective values of the dielectric permittivity of heterogeneous materials including the composites with tailored matrix electric properties and dispersed inclusions, which can be used as nanostructure elements.


[1] Fizicheskiy entsiklopedicheskiy slovar’. A.M. Prokhorov, ed. [Encyclopedic Dictionary of Physics]. Moscow, Sov. Entsiklopediya Publ., 1983. 928 p.

[2] Landau L.D., Lifshits E.M. Teoreticheskaya fizika. V 10 t. T 8. Eletrodinamika sploshnykh sred [Physical Theory. In 10 vol. Vol. 8. Electrodynamics of Continuum]. Moscow, Nauka Publ., 1992. 664 p.

[3] Politekhnicheskiy slovar’. A.Yu. Ishlinskiy ed. [Polytechnic Dictionary]. Moscow, Sov. Entsiklopediya Publ., 1989. 656 p.

[4] Kats E.A. Fullereny, uglerodnye nanotrubki i nanoklastery. Rodoslovnaya form i idey [Fullerenes, Carbon Nanotubes and Nanoclusters. Pedigree of Forms and Ideas]. Moscow, LKI Publ., 2006. 296 p.

[5] Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoy sredy [Mathematical Models of Mechanics and Electrodynamics of Continuum]. Moscow, MGTU im. N.E. Baumana Publ., 2008. 512 p.

[6] Maxwell C. Treatise on electricity and magnetism. Oxford, 1873.

[7] Maugin Gerard A. Continuum mechanics of electromagnetic solids. Amsterdam: North-Holland Publishing Co., 1988.

[8] Tolmachev V.V., Golovin A.M., Potapov V.S. Termodinamika i elektrodinamika sploshnoy sredy [Continuum Thermodynamics and Electrodynamics]. Moscow, Mos. Gos. Univ. Publ., 1988. 232 p.

[9] Ermakov G.A., Fokin A.G., Shermergor T.D. Calculating the Boundariess for the Effective Dielectric Constants of Inhomogeneous Dielectrics. Zh. Tekh. Fiz. [Tech. Phys. The Russ. J. Appl. Phys], 1974, vol. 44, no. 2, pp. 249-255 (in Russ.).

[10] Hashin Z., Shtrikman S. A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys., 1962, vol. 33, pp. 3125-3132. DOI: 10.1063/1.1728579

[11] Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [Theory of Elasticity of Microinhomogeneous Media ]. Moscow, Nauka Publ., 1977. 400 p.

[12] Carslaw H.S., Jaeger J.C. Conduction of heat in solids. Oxford University Press, London, 1947.

[13] Cristensen R.M. Mechanics of composite materials. Livermore, New York, Chichester, Brisbane, Toronto, John Wiley & Sons Inc., 1979.

[14] Odelevskiy V.I. Calculation of Generalized Conductivity of Heterogeneous Systems. Zh. Tekh. Fiz. [Tech. Phys. The Russ. J. Appl. Phys], 1951, vol. 21, no. 6, pp. 667-685 (in Russ.).

[15] Dul’nev G.N., Zarichnyak Yu.P. Teploprovodnost’ smesey i kompozitsionnykh materialov. Sprav. Kniga [Thermal Conductivity of Composite Materials and Mixtures. Reference Book], Leningrad, Energiya Publ., 1974, 264 p.

[16] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Estimation of the Effective Thermal Conductivity of the Composite with Spherical Inclusions by the Method of SelfConsistency. Jelektr. Nauchno-Tehn. Izd "Nauka Iobrazovanie" [El. Sc.-Tech. Publ. Science and Education], 2013, no. 9. DOI: 10.7463/0913.0601512

[17] Golovin N.N., Zarubin V.S., Kuvyrkin G.N. Mixture Models of Composite Mechanics. P. 2. Models of Nonlinear Deforming Carbon-Based Composites. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2009, no. 3, pp. 36-49 (in Russ.).