|

Radiation-resistant optical fibers

Authors: Tomashuk A.L., Dvoretskiy D.A., Lazarev V.A., Pnev A.B., Karasik V.Ye., Salganskiy M.Yu., Kashaykin P.F., Khopin V.F., Guryanov A.N., Dianov V.N. Published: 12.10.2016
Published in issue: #5(110)/2016  
DOI: 10.18698/0236-3933-2016-5-111-124

 
Category: Physics | Chapter: Physical Electronics  
Keywords: optical fiber, radiation-induced attenuation of light, radiation resistance

This article summarizes the results of the research of the microscopic mechanisms of radiation-induced attenuation of light (RIA) in radiation-resistant optical fibers with an undoped and F-doped silica core. We created a laboratory technology for radiation-resistant optical fibers with an undoped high-oxygen-excess silica core. Our research discovered that oxygen excess in the core promotes significant suppression of all the RIA mechanisms. Direct experimental comparison of the fibers developed and an industrial radiation-resistant fiber of the "J-fiber" company shows that RIA in the former fibers is a few times lower than in the latter at the wavelengths of 1.31 and 1.55 μm in the course of γ-irradiation from a 60Co-source at a dose rate of 7.6 Gy/s up to a dose of at least ~28 kGy.

References

[1] Chigusa Y., Watanabe M., Kyoto M., Ooe M., Matsubara T. y-Ray and neutron irradiation characteristics of pure silica core single mode fiber and its life time estimation. IEEE Transactions on Nucleart Science, 1988, Feb., vol. 35, no. 1.

[2] Dolgov I.I., Ivanov G.A., Chamorovskiy Yu.K., Yakovlev M.Ya. Radiation resistant singlemode optical fibers with a silica core. Fotonexpress, 2005, no. 6(46), pp. 4-10 (in Russ.).

[3] Aikawa K., Izoe K., Shamoto N., Kudoh M., Tsumanuma T. Radiation resistant singlemode optical fiber and method of manufacturing thereof. U.S. Patent 7440673, Oct. 21, 2008.

[4] Matthijsse P., Gooijer F., Flammer I., Regnier E., Kuyt G. Fluorine-doped optical fiber. U.S. Patent 7689093, Mar. 30, 2010.

[5] Wijnands T., Aikawa K., Kuhnhenn J., Ricci D., Weinand U. Radiation tolerant optical fibers: From sample testing to large series production. J. Lightw. Technol., 2011, Nov., vol. 29, no. 22, pp. 3393-3400.

[6] Wijnands T., De Jonge L.K., Kuhnhenn J., Hoeffgen S.K., Weinand U. Optical absorption in commercial single mode optical fibers in a high energy physics radiation field. IEEE Trans. Nucl. Sci., 2008, Aug., vol. 55, no. 4, pp. 2216-2222.

[7] Tomashuk A.L., Salganskiy M.Yu., Kashaykin P.F., Khopin V.F., Pnev A.B., Karasik V.E., Gur’yanov A.N., Dianov E.M. Radiatsionno-stoykiy volokonnyy svetovod, sposob ego izgotovleniya i sposob povysheniya radiatsionnoy stoykosti volokonnogo svetovoda (varianty) [Radiation resistant optical fiber and method of manufacturing thereof, a method of increasing radiation resistance of an optical fiber (Options)]. Patent RF no. 2537523, 07.10.2014.

[8] Griscom D.L. Self-trapped holes in pure-silica glass: A history of their discovery and characterization and an example of their critical significance to industry. J. Non-Cryst. Solids, 2006, vol. 352, pp. 2601-2617.

[9] Griscom D.L., Friebele E.J. Fundamental radiation-induced defect centers in synthetic fused silica: atomic chlorine, delocalized E’ centers, and a triple state. Phys. Rev. B, 1986, vol. 34, no. 11, pp. 7524-7533.

[10] Nagel S.R., MacChesney J.B., Walker K.L. An Overview of the modified chemical vapor deposition (MCVD) process and performance. IEEE J. Quantum Electron, 1982, vol. 18, no. 4, pp. 459-476.

[11] Kirchhof J., Unger S., Grau L., Funke A., Kleinert P. A new MCVD technique for increased efficiency of dopant incorporation in optical fiber fabrication. Cryst. Res. Technol., 1990, vol. 25, pp. 29-34.

[12] Guryanov A.N., Salganskii M.Yu., Khopin V.F., Kosolapov A.F., Semenov S.L. High-aperture optical waveguides based on fluorine-doped silica glass. Inorg. Mater., 2009, vol. 45, no. 7, pp. 823-826.

[13] Himeno K., Matsuo S., Guan N., Wada A. Low-bending-loss single-mode fibers for fiber-to-the-home. J. Lightw. Technol., 2005, vol. 23, no. 11, pp. 3494-3499.