|

Method of neuro-fuzzy estimation of graphical user interface usability

Authors: Korvyakov V.P. Published: 12.10.2016
Published in issue: #5(110)/2016  
DOI: 10.18698/0236-3933-2016-5-61-74

 
Category: Informatics, Computer Engineering and Control | Chapter: Mathematical Support and Software for Computers, Computer Complexes and Networks  
Keywords: graphical user interface, usability, fuzzy logic, artificial neural network, Fitts law

This paper provides an approach to fuzzy estimation of graphical user interface usability on the basis of measurements of its individual components. The considered aspects of usability are Fitts law-based value of efficiency and estimation of user satisfaction using a single-layer perceptron, trained by expert data. Model of human-computer interaction is being formalized using directed graph. An example provided in a paper describes usability estimation of different mockups for control action execution interface for space vehicle onboard computer system.

References

[1] Standard RF GOST R ISO 9241-11-2010. Ergonomicheskie trebovaniya k provedeniyu ofisnykh rabot s ispol’zovaniem videodispleynykh terminalov (VDT). Ch. 11. Rukovodstvo po obespecheniyu prigodnosti ispol’zovaniya [State Standard R ISO 9241-11-2010. Ergonomic requirements for office work using video display terminals (VDT). Part 11. Guidelines for usability]. Moscow, Standartinform Publ., 2011. 28 p.

[2] Fitts P.M. The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 1954, vol. 47 (6), pp. 381-391.

[3] Beamish D., Bhatti S., Chubbs S., MacKenzie S., Wu J., Jing Z. Estimation of psychomotor delay from the Fitts’ law coefficients. Biological Cybernetics, 2009, vol. 101, iss. 4, pp. 279-296.

[4] Raskin J. The human interface. New directions for designing interactive systems. Addison-Wesley Professional, 2000.

[5] Standard RF GOST 22269-76. Sistema "Chelovek-mashina". Rabochee mesto operatora. Vzaimnoe raspolozhenie elementov rabochego mesta. Obshchie ergonomicheskie trebovaniya [State Standard 22269-76. Man-machine system. Operator’s workstation. The relative position of the working space elements. General ergonomic requirements]. Moscow, Izd. Standartov Publ., 1988. 4 p.

[6] Oztekin A., Kong Z., Uysal O. UseLearn: A novel checklist and usability evaluation method for eLearning systems by criticality metric analysis. International Journal of Industrial Ergonomics, 2010, vol. 40, pp. 455-469.

[7] Oztekin A., Delen D., Turkyilmaz A., Zaim S. A machine learning-based usability evaluation method for eLearning systems. Decision Support Systems, 2013, vol. 56, pp. 63-73.

[8] Korvald C., Kim E., Reza H. Evaluation and implementation of machine learning techniques in usability testing for web sites. Proceedings of the 47th Annual Midwest Instruction and Computing Symposium, April 2014. Verona, WI. Available at: http://micsymposium.org/mics2014/ProceedingsMICS_2014/mics2014_submission_23.pdf (accessed 14.10.2015).

[9] Myasnikov A.S. Decision Support System for buying a car. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2009, no. 1. Available at: http://technomag.neicon.ru/en/doc/113752.html

[10] Kuznetsov M.A., Isaev E.A. Evaluation attractive location residential building in the city array. Izvestiya VolgGTU [Izvestiya Volgograd State Technical University. Ser. Actual problems of management, computing hardware and informatics in engineering systems], 2015, no. 2 (157), pp. 122-127 (in Russ.).

[11] Fuzzylite. A fuzzy logic control library and application. Available at: http://www.fuzzylite.com (accessed 21.07.2015).

[12] Rada-Vilela J. Fuzzylite: A fuzzy logic control library in C++. Proceedings of the Open Source Developers Conference. Oct. 2013, Auckland, New Zeland. Available at: http://fuzzylite.googlecode.eom/files/fuzzylite-3.1.pdf (accessed 12.10.2015).