|

Simulation Model of an Adaptive Control System for a Segmented Deformable Mirror in a Space Telescope and its Metrological Certification

Authors: Sychev V.V., Klem A.I. Published: 29.03.2021
Published in issue: #1(134)/2021  
DOI: 10.18698/0236-3933-2021-1-14-32

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Metrology and Measurement Assurance  
Keywords: adaptive control system, permanent magnet synchronous machine, simulation model, metrological certification, error of inadequacy

The paper concerns a measurement problem of identifying inadequacy in a mathematical model of an adaptive control system driving segments of a deformable mirror in a large telescope. This is necessary to assess the validity of this model. A dual-axis servo drive unit utilising permanent magnet synchronous machines controls the mirror segments. The servo unit rotates each segment of the deformable mirror with respect to its axis of symmetry and tilts each segment relative to the fixed central reference segment. The paper provides general descriptions of the model structure and the feedback in the current control loop employing phase current measurement and coordinate transformations. We present initial data sets for metrological certification of the model. We used the MMK-stat M software to perform the metrological certification so that we could check empirical equations, determine the scope of application for the model and validate it. The metrological certification allowed us to confirm that the model of an adaptive control system for a segmented deformable telescope mirror is valid, and to find the model structure that ensures a more accurate description of the measurement problem that concerns controlling the spatial position of the object simulated

References

[1] Samygina E.K., Klem A.I. Numerical simulation of the adaptive control system of the composite primary mirror of a large-size space telescope. Atmos. Ocean Opt., 2019, vol. 32, no. 5, pp. 590--596. DOI: https://doi.org/10.1134/S1024856019050142

[2] Samygina E.K., Klem A.I. Numerical simulation of the adaptive control system of the composite primary mirror of a large-size space telescope. Atmos. Ocean Opt., 2019, vol. 32, no. 5, pp. 590--596. DOI: https://doi.org/10.1134/S1024856019050142

[3] Demin A.V. Mathematical model of composite mirror adjustment process. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering], 2015, vol. 58, no. 11, pp. 901--907 (in Russ.). DOI: https://doi.org/10.17586/0021-3454-2015-58-11-901-907

[4] Demin A.V., Rostokin P.V. Alignment algorithm for composite mirrors. Komp’yuternaya optika [Computer Optics], 2017, vol. 41, no. 2, pp. 291--294 (in Russ.). DOI: https://doi.org/10.18287/2412-6179-2017-41-2-291-294

[5] Dubrovich V.K., Zaika D.Yu., Kachurin V.K. et al. Modeling the "Millimetron" space telescope alignment. Informatsiya i Kosmos [Information and Space], 2017, no. 4, pp. 39--43 (in Russ.).

[6] Dreh- und Schwenkrundtische. directindustry.de: website. https://pdf.directindustry.de/pdf/hiwin-gmbh/dreh-schwenkrundtische/14370-835949.html (accessed 15.01.2018).

[7] Samygina E.K. Enhancement of servodrive control system for exact tracking in the extended speed range. 2018 X International Conference on Electrical Power Drive Systems (ICEPDS), Novocherkassk, 2018, pp. 1--4. DOI: https://doi.org/10.1109/ICEPDS.2018.8571515

[8] Wang J., Wu J., Gan C., et al. Comparative study of flux-weakening control methods for PMSM drive over wide speed range. 2016 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, 2016. Available at: https://ieeexplore.ieee.org/document/7837218

[9] Zabotin A.V. [Improving exploitation characteristics of precision diagnostic servodrive]. Nauka. Tekhnologiya. Proizvodstvo--2016. Mat. Vseros. nauch.-tekh. konf. [Science. Technology. Production--2016. Proc. Rus. Sc.-Tech. Conf.]. Ufa, USPTU Publ., 2016, pp. 110--114 (in Russ.).

[10] Rassudov L.N., Balkovoi A.P. Dynamic model exact tracking control of a permanent magnet synchronous motor. 2015 International Siberian Conference on Control and Communications (SIBCON), Omsk, 2015. DOI: https://doi.org/10.1109/SIBCON.2015.7147187

[11] Rassudov L.N., Balkovoi A.P. FPGA-based broadband current control for a servodrive. Proc. 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW), St. Petersburg, 2016, pp. 664--667. DOI: https://doi.org/10.1109/EIConRusNW.2016.7448270

[12] Samygina E.K., Tiapkin M., Rassudov L.N., et al. Extended algorithm of electrical parameters identification via frequency response analysis. 2019 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED), Moscow, Russia, 2019, pp. 1--4. DOI: https://doi.org/10.1109/IWED.2019.8664340

[13] Shpak D.M. Razrabotka i issledovanie sistemy upravleniya vysokoskorostnykh shpindeley stankov na baze asinkhronnykh i sinkhronnykh elektrodvigateley. Dis. kand. tekh. nauk [Development and study on control system of high-speed work spindles based on synchronous and asynchronous motors. Cand. Sc. (Eng.) Diss.]. Moscow, MPEI, 2019 (in Russ.).

[14] Klinachev N.V., Kuleva N.Yu., Voronin S.G. Rotor position estimation for permanent magnet synchronous motor. Vestnik YuUrGU. Seriya Energetika [Bulletin of South Ural State University. Series Power Engineering], 2014, vol. 14, no. 2, pp. 49--54 (in Russ.).

[15] Levin S.F. Guide to the expression of uncertainty in measurement: problems, unrealized capabilities, and revisions. Part 2. Probabilistic-statistical problems. Meas. Tech., 2018, vol. 61, no. 4, pp. 327--334. DOI: https://doi.org/10.1007/s11018-018-1429-y

[16] Levin S.F. Metrological attestation of software methods of decision of measuring’s tasks: theory and practice. Sistemy obrabotki informatsii [Information Processing Systems], 2008, no. 4 (71), pp. 117--125 (in Russ.).