|

Designing Korsch and Ritchey --- Chretien Optical Schemes with a Lens Corrector for the Small-Sized Earth Remote Sensing Systems

Authors: Zavarzin V.I., Oreshechkin S.S. Published: 15.01.2024
Published in issue: #4(145)/2023  
DOI: 10.18698/0236-3933-2023-4-4-23

 
Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Optical and Optoelectronic Instruments and Complexes  
Keywords: small-sized spacecraft, Earth remote sensing, Korsch scheme, Ritchey --- Chretien scheme

Abstract

The paper considers the Ritchey --- Chretien optical system with the field aberration lens corrector and the three-mirror Korsch scheme, which could be used as the high-resolution systems for small spacecraft, including the CubeSat format. Lens calculation and mass-dimensional characteristics analysis of their optical elements were performed. It presents main optical and technical parameters, as well as the optical systems characteristics, for small spacecraft. Using the modulation transfer function of the optical system, the image quality was assessed. It is shown that the optical elements masses of the Korsch and Ritchey --- Chretien schemes with a lens corrector depend not only on the system focal length and the input aperture diameter, but also on the angular field, which, in turn, depends on the required system capture band and the lightweight mirror manufacture technology. Mass-dimension and aberration capabilities of the calculated schemes were analyzed with the mass of optical elements less than 5 kg being of greatest interest when creating a multi-component satellite constellation of small spacecraft. It is shown that the methodology for calculating and estimating the lens mass already at the initial stage of designing small spacecraft makes it possible to select the best optical design that would determine their characteristics, mass and overall dimensions, which would shorten the development process, selection of a launch vehicle and reduce the final product cost

Please cite this article in English as:

Zavarzin V.I., Oreshechkin S.S. Designing Korsch and Ritchey --- Chretien optical schemes with a lens corrector for the small-sized Earth remote sensing systems. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2023, no. 4 (145), pp. 4--23 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2023-4-4-23

References

[1] Landmapper-HD 1, ..., 20 (Corvus-HD). space.skyrocket.de: website.Available at: https://space.skyrocket.de/doc_sdat/landmapper-hd.htm(accessed: 29.09.2022).

[2] Gansvind I.N. Small spacecraft --- new direction in space activities. Mezhdunarodnyy nauchno-issledovatelskiy zhurnal [International Research Journal], 2018, no. 12, pp. 84--91 (in Russ.). DOI: https://doi.org/10.23670/IRJ.2018.78.12.053

[3] Zimin I.I., Valov M.V., Kirillov V.A. Development prospect of JSC "ISS" small satellites. Naukoemkie tekhnologii [Science Intensive Technologies], 2018, vol. 19, no. 12, pp. 48--55 (in Russ.).

[4] Arkhipov S.A., Senik B.N., Zavarzin V.I. Developing and fabricating optical systems for prospective remote-earth-probe spacecraft. J. Opt. Technol., 2013, vol. 80, no. 1, pp. 25--27. DOI: https://doi.org/10.1364/JOT.80.000025

[5] Zavarzin V.I., Mitrofanova Yu.S. System solutions for prospective hyperspectral equipment. J. Opt. Technol., 2017, vol. 84, no. 4, pp. 226--230. DOI: https://doi.org/10.1364/JOT.84.000226

[6] Arkhipov S.A., Zavarzin V.I., Li A.V. [Mirror optical systems for space compact hyperspectral imagers of remote sensing of the Earth]. Akustoopticheskie i radiolokatsionnye metody izmereniy i obrabotki informatsii. Mater. 10-y Mezhdunar. nauch.-prakt. konf. [Acousto-Optical and Radar Methods of Measurements and Information Processing. Proc. Int. Sc.-Pract. Conf.]. Moscow, NTTs UP RAN Publ., 2017, pp. 262--264 (in Russ.).

[7] Zavarzin V.I., Zaytsev I.M., Yakubovskiy S.V. Optical system for the Earth remote sensing small-sized spacecraft of the CubeSat format. Herald of the Bauman Moscow State Technical University, Series Instrument Engineering, 2023, no. 3 (144), pp. 18--32 (in Russ.). DOI: https://doi.org/10.18698/0236-3933-2023-3-18-32

[8] Atanov S.K. Designing of multisatellite groupings on the basis of midget space vehicles. ENU im. L.N. Gumileva [Bulletin of the L.N. Gumilyov Eurasian National University], 2012, Spec. iss. (in Russ.). Available at: https://dspace.enu.kz/handle/data/1020 (accessed: 20.11.2022).

[9] Zaytsev I.M., Morozov S.A. [OEA remote sensing chemotechnical solutions for CubeSat MCAs]. Mater. XVIII Vseros. NTK "Sistemy nablyudeniya, monitoringa i distantsionnogo zondirovaniya Zemli" [Proc. XVIII Russ. Sc.-Tech. Conf. Systems of Earth Observation, Monitoring and Remote Sensing], Sochi, 2022, pp. 71--73 (in Russ.).

[10] Zaytsev I.M., Yakubovskiy S.V. [Optical system for small spacecraft for remote sensing of the Earth in the CubeSat format]. V: Molodezh i budushchee aviatsii i kosmonavtiki [Youth and the Future of Aviation and Cosmonautics]. Moscow, Pero Publ., 2022, pp. 133--134 (in Russ.).

[11] Borisov Yu.I. Rossiya obladaet vsemi moshchnostyami dlya seriynogo izgotovleniya sputnikov. roscosmos.ru: website (in Russ.). Available at: https://www.roscosmos.ru/3851 (accessed: 17.11.2022)

[12] Baklanov A.I. Status analysis and progress trends of high- and ultrahighresolution imaging systems. Vestnik SGAU, 2010, no. 2, pp. 80--91 (in Russ.).

[13] Slyusarev G.G. Metody rascheta opticheskikh system [Methods of calculation of optical systems]. Leningrad, Mashinostroenie Publ., 1969.

[14] Mosyagin G.M., Lebedev E.N., Nemtinov V.B. Teoriya optiko-elektronnykh system [Theory of optoelectronic systems]. Moscow, Mashinostroenie Publ., 1990.

[15] Software Zemaх 13. Optical design program. User’s manual. Redmond, Radiant Zemax LLC, 2014.

[16] Zavarzin V.I., Batshev V.I., Polshchikova O.V. Kompyuternye tekhnologii i modelirovanie v optotekhnike [Computer technologies and modeling in optotechnics]. Moscow, Bauman MSTU Publ., 2017.

[17] Panov V.A., ed. Spravochnik konstruktora optiko-mekhanicheskikh priborov [Handbook of the designer of optical-mechanical devices]. Leningrad, Mashinostroenie Publ., 1980.

[18] Zavarzin V.I., Kravchenko S.O., Mitrofanova Y.S. Selection of optical materials to minimize longitudinal chromatic aberration in a prospective broad-coverage medium-resolution multispectral instrument. J. Opt. Technol., 2016, vol. 83, no. 10, pp. 593--598. DOI: https://doi.org/10.1364/JOT.83.000593

[19] Born M., Wolf E. Principles of optics. Cambridge, Cambridge University Press, 1980.

[20] Ablekov V.K., ed. Kosmicheskaya optika. Trudy IX Mezhdunarodnogo kongressa Mezhdunarodnoy komissii po optike [Space optics. Proceedings of the IX International Congress of the International Commission on Optics]. Moscow, Mashinostroenie Publ., 1980.