Об альтернативных способах логарифмирования в конечных группах - page 16

[4] Pollard J.M. Monte Carlo methods for index computation (mod p).
Math. Comp.
,
1978, vol. 32, no. 143, pp. 918–924.
[5] Adleman L.M. A subexponentional algorithm for the discrete logarithm problem
with applications to cryptography.
Proc. IEEE 20th Annual Symp. on Foundations of
Computer Science
. 1979. pp. 55–60.
[6] Dixon J.D. Asymptotically fast factorization of integers. Math. Comp., 1981, vol. 36,
no. 153, pp. 255–260.
[7] De Bruijn N.G., Erd˝os P. A combinatioral [sic] problem.
Indagationes Mathematica
,
1948, vol. 10, pp. 421–423.
[8] Vasilenko O.N. Teoretiko-chislovye algoritmy v kriptografii [Number-theoretic
algorithms in cryptography]. Moscow, MTsNMO Publ., 2003. 328 p.
[9] Matyukhin D.V. On the asymptotic complexity of discrete taking the logarithm in the
field GF(p)
Diskretnaya matematika
[Discrete Mathematics and Applications], 2003,
vol. 15, iss. 1, pp. 28–49 (in Russ.).
[10] Coppersmith D., Odlyzko A.M., Schroeppel R. Discrete logarithms in GF(p).
Algorithmica
, 1986, vol. 1, pp. 1–15.
Статья поступила в редакцию 27.12.2013
Дмитрий Евгеньевич Островский — студент 6-го курса кафедры “Информационная
безопасность” МГТУ им. Н.Э. Баумана.
МГТУ им. Н.Э. Баумана, Российская Федерация, 105005, Москва, ул. 2-я Бауманская,
д. 5.
D.E. Ostrovskii — 6-year student of “Information Security” department of the Bauman
Moscow State Technical University.
Bauman Moscow State Technical University, Vtoraya Baumanskaya ul. 5, Moscow,
105005 Russian Federation.
ISSN 0236-3933. Вестник МГТУ им. Н.Э. Баумана. Сер. “Приборостроение”. 2014. № 2 95
1...,6,7,8,9,10,11,12,13,14,15 16
Powered by FlippingBook